![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sgsummulcl | Structured version Visualization version GIF version |
Description: A finite semiring sum multiplied by a constant, analogous to gsummulc2 18815. (Contributed by AV, 23-Aug-2019.) |
Ref | Expression |
---|---|
srgsummulcr.b | ⊢ 𝐵 = (Base‘𝑅) |
srgsummulcr.z | ⊢ 0 = (0g‘𝑅) |
srgsummulcr.p | ⊢ + = (+g‘𝑅) |
srgsummulcr.t | ⊢ · = (.r‘𝑅) |
srgsummulcr.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
srgsummulcr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
srgsummulcr.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
srgsummulcr.x | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
srgsummulcr.n | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
Ref | Expression |
---|---|
sgsummulcl | ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | srgsummulcr.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | srgsummulcr.z | . 2 ⊢ 0 = (0g‘𝑅) | |
3 | srgsummulcr.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
4 | srgcmn 18716 | . . 3 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ CMnd) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
6 | srgmnd 18717 | . . 3 ⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) | |
7 | 3, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
8 | srgsummulcr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | srgsummulcr.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | srgsummulcr.t | . . . 4 ⊢ · = (.r‘𝑅) | |
11 | 1, 10 | srglmhm 18743 | . . 3 ⊢ ((𝑅 ∈ SRing ∧ 𝑌 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑌 · 𝑥)) ∈ (𝑅 MndHom 𝑅)) |
12 | 3, 9, 11 | syl2anc 573 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ (𝑌 · 𝑥)) ∈ (𝑅 MndHom 𝑅)) |
13 | srgsummulcr.x | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
14 | srgsummulcr.n | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
15 | oveq2 6804 | . 2 ⊢ (𝑥 = 𝑋 → (𝑌 · 𝑥) = (𝑌 · 𝑋)) | |
16 | oveq2 6804 | . 2 ⊢ (𝑥 = (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → (𝑌 · 𝑥) = (𝑌 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) | |
17 | 1, 2, 5, 7, 8, 12, 13, 14, 15, 16 | gsummhm2 18546 | 1 ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑌 · 𝑋))) = (𝑌 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 class class class wbr 4787 ↦ cmpt 4864 ‘cfv 6030 (class class class)co 6796 finSupp cfsupp 8435 Basecbs 16064 +gcplusg 16149 .rcmulr 16150 0gc0g 16308 Σg cgsu 16309 Mndcmnd 17502 MndHom cmhm 17541 CMndccmn 18400 SRingcsrg 18713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-oi 8575 df-card 8969 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-fzo 12674 df-seq 13009 df-hash 13322 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-plusg 16162 df-0g 16310 df-gsum 16311 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-cntz 17957 df-cmn 18402 df-mgp 18698 df-srg 18714 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |