Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgoldbeven3prm Structured version   Visualization version   GIF version

Theorem sgoldbeven3prm 42177
Description: If the binary Goldbach conjecture is valid, then an even integer greater than 5 can be expressed as the sum of three primes: Since (𝑁 − 2) is even iff 𝑁 is even, there would be primes 𝑝 and 𝑞 with (𝑁 − 2) = (𝑝 + 𝑞), and therefore 𝑁 = ((𝑝 + 𝑞) + 2). (Contributed by AV, 24-Dec-2021.)
Assertion
Ref Expression
sgoldbeven3prm (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
Distinct variable group:   𝑛,𝑁,𝑝,𝑞,𝑟

Proof of Theorem sgoldbeven3prm
StepHypRef Expression
1 sbgoldbb 42176 . 2 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)))
2 2p2e4 11332 . . . . 5 (2 + 2) = 4
3 evenz 42049 . . . . . . . 8 (𝑁 ∈ Even → 𝑁 ∈ ℤ)
43zred 11670 . . . . . . 7 (𝑁 ∈ Even → 𝑁 ∈ ℝ)
5 4lt6 11393 . . . . . . . 8 4 < 6
6 4re 11285 . . . . . . . . 9 4 ∈ ℝ
7 6re 11289 . . . . . . . . 9 6 ∈ ℝ
8 ltletr 10317 . . . . . . . . 9 ((4 ∈ ℝ ∧ 6 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((4 < 6 ∧ 6 ≤ 𝑁) → 4 < 𝑁))
96, 7, 8mp3an12 1559 . . . . . . . 8 (𝑁 ∈ ℝ → ((4 < 6 ∧ 6 ≤ 𝑁) → 4 < 𝑁))
105, 9mpani 714 . . . . . . 7 (𝑁 ∈ ℝ → (6 ≤ 𝑁 → 4 < 𝑁))
114, 10syl 17 . . . . . 6 (𝑁 ∈ Even → (6 ≤ 𝑁 → 4 < 𝑁))
1211imp 444 . . . . 5 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 4 < 𝑁)
132, 12syl5eqbr 4835 . . . 4 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (2 + 2) < 𝑁)
14 2re 11278 . . . . . 6 2 ∈ ℝ
1514a1i 11 . . . . 5 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 2 ∈ ℝ)
164adantr 472 . . . . 5 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 𝑁 ∈ ℝ)
1715, 15, 16ltaddsub2d 10816 . . . 4 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ((2 + 2) < 𝑁 ↔ 2 < (𝑁 − 2)))
1813, 17mpbid 222 . . 3 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → 2 < (𝑁 − 2))
19 2evenALTV 42109 . . . . . 6 2 ∈ Even
20 emee 42121 . . . . . 6 ((𝑁 ∈ Even ∧ 2 ∈ Even ) → (𝑁 − 2) ∈ Even )
2119, 20mpan2 709 . . . . 5 (𝑁 ∈ Even → (𝑁 − 2) ∈ Even )
22 breq2 4804 . . . . . . . 8 (𝑛 = (𝑁 − 2) → (2 < 𝑛 ↔ 2 < (𝑁 − 2)))
23 eqeq1 2760 . . . . . . . . 9 (𝑛 = (𝑁 − 2) → (𝑛 = (𝑝 + 𝑞) ↔ (𝑁 − 2) = (𝑝 + 𝑞)))
24232rexbidv 3191 . . . . . . . 8 (𝑛 = (𝑁 − 2) → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞) ↔ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞)))
2522, 24imbi12d 333 . . . . . . 7 (𝑛 = (𝑁 − 2) → ((2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) ↔ (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞))))
2625rspcv 3441 . . . . . 6 ((𝑁 − 2) ∈ Even → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞))))
27 2prm 15603 . . . . . . . . . . . 12 2 ∈ ℙ
2827a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 2 ∈ ℙ)
29 oveq2 6817 . . . . . . . . . . . . 13 (𝑟 = 2 → ((𝑝 + 𝑞) + 𝑟) = ((𝑝 + 𝑞) + 2))
3029eqeq2d 2766 . . . . . . . . . . . 12 (𝑟 = 2 → (𝑁 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑁 = ((𝑝 + 𝑞) + 2)))
3130adantl 473 . . . . . . . . . . 11 (((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) ∧ 𝑟 = 2) → (𝑁 = ((𝑝 + 𝑞) + 𝑟) ↔ 𝑁 = ((𝑝 + 𝑞) + 2)))
323zcnd 11671 . . . . . . . . . . . . . 14 (𝑁 ∈ Even → 𝑁 ∈ ℂ)
33 2cnd 11281 . . . . . . . . . . . . . 14 (𝑁 ∈ Even → 2 ∈ ℂ)
34 npcan 10478 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → ((𝑁 − 2) + 2) = 𝑁)
3534eqcomd 2762 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ) → 𝑁 = ((𝑁 − 2) + 2))
3632, 33, 35syl2anc 696 . . . . . . . . . . . . 13 (𝑁 ∈ Even → 𝑁 = ((𝑁 − 2) + 2))
3736adantr 472 . . . . . . . . . . . 12 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 𝑁 = ((𝑁 − 2) + 2))
38 simpr 479 . . . . . . . . . . . . 13 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → (𝑁 − 2) = (𝑝 + 𝑞))
3938oveq1d 6824 . . . . . . . . . . . 12 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → ((𝑁 − 2) + 2) = ((𝑝 + 𝑞) + 2))
4037, 39eqtrd 2790 . . . . . . . . . . 11 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → 𝑁 = ((𝑝 + 𝑞) + 2))
4128, 31, 40rspcedvd 3452 . . . . . . . . . 10 ((𝑁 ∈ Even ∧ (𝑁 − 2) = (𝑝 + 𝑞)) → ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))
4241ex 449 . . . . . . . . 9 (𝑁 ∈ Even → ((𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
4342reximdv 3150 . . . . . . . 8 (𝑁 ∈ Even → (∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
4443reximdv 3150 . . . . . . 7 (𝑁 ∈ Even → (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
4544imim2d 57 . . . . . 6 (𝑁 ∈ Even → ((2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑁 − 2) = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
4626, 45syl9r 78 . . . . 5 (𝑁 ∈ Even → ((𝑁 − 2) ∈ Even → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))))
4721, 46mpd 15 . . . 4 (𝑁 ∈ Even → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
4847adantr 472 . . 3 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → (2 < (𝑁 − 2) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
4918, 48mpid 44 . 2 ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → (∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
501, 49syl5com 31 1 (∀𝑛 ∈ Even (4 < 𝑛𝑛 ∈ GoldbachEven ) → ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1628  wcel 2135  wral 3046  wrex 3047   class class class wbr 4800  (class class class)co 6809  cc 10122  cr 10123   + caddc 10127   < clt 10262  cle 10263  cmin 10454  2c2 11258  4c4 11260  6c6 11262  cprime 15583   Even ceven 42043   GoldbachEven cgbe 42139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-2o 7726  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-sup 8509  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-3 11268  df-4 11269  df-5 11270  df-6 11271  df-n0 11481  df-z 11566  df-uz 11876  df-rp 12022  df-fz 12516  df-seq 12992  df-exp 13051  df-cj 14034  df-re 14035  df-im 14036  df-sqrt 14170  df-abs 14171  df-dvds 15179  df-prm 15584  df-even 42045  df-odd 42046  df-gbe 42142
This theorem is referenced by:  sbgoldbm  42178
  Copyright terms: Public domain W3C validator