![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnsf | Structured version Visualization version GIF version |
Description: The sign function. (Contributed by Thierry Arnoux, 9-Sep-2018.) |
Ref | Expression |
---|---|
sgnsval.b | ⊢ 𝐵 = (Base‘𝑅) |
sgnsval.0 | ⊢ 0 = (0g‘𝑅) |
sgnsval.l | ⊢ < = (lt‘𝑅) |
sgnsval.s | ⊢ 𝑆 = (sgns‘𝑅) |
Ref | Expression |
---|---|
sgnsf | ⊢ (𝑅 ∈ 𝑉 → 𝑆:𝐵⟶{-1, 0, 1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgnsval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | sgnsval.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
3 | sgnsval.l | . . 3 ⊢ < = (lt‘𝑅) | |
4 | sgnsval.s | . . 3 ⊢ 𝑆 = (sgns‘𝑅) | |
5 | 1, 2, 3, 4 | sgnsv 30061 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑆 = (𝑥 ∈ 𝐵 ↦ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)))) |
6 | c0ex 10235 | . . . . 5 ⊢ 0 ∈ V | |
7 | 6 | tpid2 4438 | . . . 4 ⊢ 0 ∈ {-1, 0, 1} |
8 | 1ex 10236 | . . . . . 6 ⊢ 1 ∈ V | |
9 | 8 | tpid3 4440 | . . . . 5 ⊢ 1 ∈ {-1, 0, 1} |
10 | negex 10480 | . . . . . 6 ⊢ -1 ∈ V | |
11 | 10 | tpid1 4437 | . . . . 5 ⊢ -1 ∈ {-1, 0, 1} |
12 | 9, 11 | keepel 4292 | . . . 4 ⊢ if( 0 < 𝑥, 1, -1) ∈ {-1, 0, 1} |
13 | 7, 12 | keepel 4292 | . . 3 ⊢ if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1} |
14 | 13 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐵) → if(𝑥 = 0 , 0, if( 0 < 𝑥, 1, -1)) ∈ {-1, 0, 1}) |
15 | 5, 14 | fmpt3d 6528 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑆:𝐵⟶{-1, 0, 1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ifcif 4223 {ctp 4318 class class class wbr 4784 ⟶wf 6027 ‘cfv 6031 0cc0 10137 1c1 10138 -cneg 10468 Basecbs 16063 0gc0g 16307 ltcplt 17148 sgnscsgns 30059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pr 5034 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-mulcl 10199 ax-i2m1 10205 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-neg 10470 df-sgns 30060 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |