Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnpbi Structured version   Visualization version   GIF version

Theorem sgnpbi 30917
Description: Positive signum. (Contributed by Thierry Arnoux, 2-Oct-2018.)
Assertion
Ref Expression
sgnpbi (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴))

Proof of Theorem sgnpbi
StepHypRef Expression
1 id 22 . . . 4 (𝐴 ∈ ℝ*𝐴 ∈ ℝ*)
2 eqeq1 2764 . . . . 5 ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = 1 ↔ 0 = 1))
32imbi1d 330 . . . 4 ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (0 = 1 → 0 < 𝐴)))
4 eqeq1 2764 . . . . 5 ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = 1 ↔ 1 = 1))
54imbi1d 330 . . . 4 ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (1 = 1 → 0 < 𝐴)))
6 eqeq1 2764 . . . . 5 ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = 1 ↔ -1 = 1))
76imbi1d 330 . . . 4 ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (-1 = 1 → 0 < 𝐴)))
8 0ne1 11280 . . . . . . 7 0 ≠ 1
98neii 2934 . . . . . 6 ¬ 0 = 1
109pm2.21i 116 . . . . 5 (0 = 1 → 0 < 𝐴)
1110a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐴 = 0) → (0 = 1 → 0 < 𝐴))
12 simp2 1132 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴 ∧ 1 = 1) → 0 < 𝐴)
13123expia 1115 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = 1 → 0 < 𝐴))
14 neg1rr 11317 . . . . . . . 8 -1 ∈ ℝ
15 neg1lt0 11319 . . . . . . . . 9 -1 < 0
16 0lt1 10742 . . . . . . . . 9 0 < 1
17 0re 10232 . . . . . . . . . 10 0 ∈ ℝ
18 1re 10231 . . . . . . . . . 10 1 ∈ ℝ
1914, 17, 18lttri 10355 . . . . . . . . 9 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
2015, 16, 19mp2an 710 . . . . . . . 8 -1 < 1
2114, 20gtneii 10341 . . . . . . 7 1 ≠ -1
2221nesymi 2989 . . . . . 6 ¬ -1 = 1
2322pm2.21i 116 . . . . 5 (-1 = 1 → 0 < 𝐴)
2423a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (-1 = 1 → 0 < 𝐴))
251, 3, 5, 7, 11, 13, 24sgn3da 30912 . . 3 (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 → 0 < 𝐴))
2625imp 444 . 2 ((𝐴 ∈ ℝ* ∧ (sgn‘𝐴) = 1) → 0 < 𝐴)
27 sgnp 14029 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1)
2826, 27impbida 913 1 (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139   class class class wbr 4804  cfv 6049  0cc0 10128  1c1 10129  *cxr 10265   < clt 10266  -cneg 10459  sgncsgn 14025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-sgn 14026
This theorem is referenced by:  sgnmulsgp  30921
  Copyright terms: Public domain W3C validator