Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnmulsgn Structured version   Visualization version   GIF version

Theorem sgnmulsgn 30945
Description: If two real numbers are of different signs, so are their signs. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Assertion
Ref Expression
sgnmulsgn ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))

Proof of Theorem sgnmulsgn
StepHypRef Expression
1 neg1lt0 11328 . . . . 5 -1 < 0
2 breq1 4787 . . . . 5 ((sgn‘(𝐴 · 𝐵)) = -1 → ((sgn‘(𝐴 · 𝐵)) < 0 ↔ -1 < 0))
31, 2mpbiri 248 . . . 4 ((sgn‘(𝐴 · 𝐵)) = -1 → (sgn‘(𝐴 · 𝐵)) < 0)
43adantl 467 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → (sgn‘(𝐴 · 𝐵)) < 0)
5 simpr 471 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = -1) → (sgn‘(𝐴 · 𝐵)) = -1)
6 simpr 471 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) = 0)
7 simplr 744 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) < 0)
87lt0ne0d 10794 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) ≠ 0)
96, 8pm2.21ddne 3026 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 0) → (sgn‘(𝐴 · 𝐵)) = -1)
10 simpr 471 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → (sgn‘(𝐴 · 𝐵)) = 1)
11 simplr 744 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → (sgn‘(𝐴 · 𝐵)) < 0)
1210, 11eqbrtrrd 4808 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → 1 < 0)
13 1nn0 11509 . . . . . 6 1 ∈ ℕ0
14 nn0nlt0 11520 . . . . . 6 (1 ∈ ℕ0 → ¬ 1 < 0)
1513, 14mp1i 13 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → ¬ 1 < 0)
1612, 15pm2.21dd 186 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) ∧ (sgn‘(𝐴 · 𝐵)) = 1) → (sgn‘(𝐴 · 𝐵)) = -1)
17 remulcl 10222 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
1817rexrd 10290 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ*)
1918adantr 466 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) → (𝐴 · 𝐵) ∈ ℝ*)
20 sgncl 30934 . . . . 5 ((𝐴 · 𝐵) ∈ ℝ* → (sgn‘(𝐴 · 𝐵)) ∈ {-1, 0, 1})
21 eltpi 4364 . . . . 5 ((sgn‘(𝐴 · 𝐵)) ∈ {-1, 0, 1} → ((sgn‘(𝐴 · 𝐵)) = -1 ∨ (sgn‘(𝐴 · 𝐵)) = 0 ∨ (sgn‘(𝐴 · 𝐵)) = 1))
2219, 20, 213syl 18 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) → ((sgn‘(𝐴 · 𝐵)) = -1 ∨ (sgn‘(𝐴 · 𝐵)) = 0 ∨ (sgn‘(𝐴 · 𝐵)) = 1))
235, 9, 16, 22mpjao3dan 1542 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (sgn‘(𝐴 · 𝐵)) < 0) → (sgn‘(𝐴 · 𝐵)) = -1)
244, 23impbida 794 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) = -1 ↔ (sgn‘(𝐴 · 𝐵)) < 0))
25 sgnnbi 30941 . . 3 ((𝐴 · 𝐵) ∈ ℝ* → ((sgn‘(𝐴 · 𝐵)) = -1 ↔ (𝐴 · 𝐵) < 0))
2618, 25syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) = -1 ↔ (𝐴 · 𝐵) < 0))
27 sgnmul 30938 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)))
2827breq1d 4794 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((sgn‘(𝐴 · 𝐵)) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))
2924, 26, 283bitr3d 298 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ ((sgn‘𝐴) · (sgn‘𝐵)) < 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3o 1069   = wceq 1630  wcel 2144  {ctp 4318   class class class wbr 4784  cfv 6031  (class class class)co 6792  cr 10136  0cc0 10137  1c1 10138   · cmul 10142  *cxr 10274   < clt 10275  -cneg 10468  0cn0 11493  sgncsgn 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-n0 11494  df-rp 12035  df-sgn 14034
This theorem is referenced by:  signsvfn  30993  signsvfnn  30997
  Copyright terms: Public domain W3C validator