Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0xadd Structured version   Visualization version   GIF version

Theorem sge0xadd 40970
Description: The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
sge0xadd.kph 𝑘𝜑
sge0xadd.a (𝜑𝐴𝑉)
sge0xadd.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
sge0xadd.c ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
Assertion
Ref Expression
sge0xadd (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem sge0xadd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 simpr 476 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
21oveq1d 6705 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = (+∞ +𝑒^‘(𝑘𝐴𝐶))))
3 sge0xadd.kph . . . . . 6 𝑘𝜑
4 sge0xadd.a . . . . . 6 (𝜑𝐴𝑉)
5 sge0xadd.c . . . . . 6 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
63, 4, 5sge0xrclmpt 40963 . . . . 5 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ*)
7 eqid 2651 . . . . . . 7 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
83, 5, 7fmptdf 6427 . . . . . 6 (𝜑 → (𝑘𝐴𝐶):𝐴⟶(0[,]+∞))
94, 8sge0nemnf 40955 . . . . 5 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ≠ -∞)
10 xaddpnf2 12096 . . . . 5 (((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ* ∧ (Σ^‘(𝑘𝐴𝐶)) ≠ -∞) → (+∞ +𝑒^‘(𝑘𝐴𝐶))) = +∞)
116, 9, 10syl2anc 694 . . . 4 (𝜑 → (+∞ +𝑒^‘(𝑘𝐴𝐶))) = +∞)
1211adantr 480 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (+∞ +𝑒^‘(𝑘𝐴𝐶))) = +∞)
13 sge0xadd.b . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
14 ge0xaddcl 12324 . . . . . . . 8 ((𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞))
1513, 5, 14syl2anc 694 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐵 +𝑒 𝐶) ∈ (0[,]+∞))
163, 4, 15sge0xrclmpt 40963 . . . . . 6 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) ∈ ℝ*)
1716adantr 480 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) ∈ ℝ*)
18 id 22 . . . . . . . 8 ((Σ^‘(𝑘𝐴𝐵)) = +∞ → (Σ^‘(𝑘𝐴𝐵)) = +∞)
1918eqcomd 2657 . . . . . . 7 ((Σ^‘(𝑘𝐴𝐵)) = +∞ → +∞ = (Σ^‘(𝑘𝐴𝐵)))
2019adantl 481 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → +∞ = (Σ^‘(𝑘𝐴𝐵)))
214elexd 3245 . . . . . . . 8 (𝜑𝐴 ∈ V)
22 iccssxr 12294 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
2322, 13sseldi 3634 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ*)
2423, 5xadd0ge 39849 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ≤ (𝐵 +𝑒 𝐶))
253, 21, 13, 15, 24sge0lempt 40945 . . . . . . 7 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
2625adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
2720, 26eqbrtrd 4707 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → +∞ ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
2817, 27xrgepnfd 39860 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = +∞)
2928eqcomd 2657 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → +∞ = (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
302, 12, 293eqtrrd 2690 . 2 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
31 simpl 472 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → 𝜑)
32 simpr 476 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞)
33 eqid 2651 . . . . . . 7 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
343, 13, 33fmptdf 6427 . . . . . 6 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
354, 34sge0repnf 40921 . . . . 5 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
3635adantr 480 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
3732, 36mpbird 247 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
38 simpr 476 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) = +∞)
3938oveq2d 6706 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞))
404, 34sge0xrcl 40920 . . . . . . . 8 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ*)
414, 34sge0nemnf 40955 . . . . . . . 8 (𝜑 → (Σ^‘(𝑘𝐴𝐵)) ≠ -∞)
42 xaddpnf1 12095 . . . . . . . 8 (((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ* ∧ (Σ^‘(𝑘𝐴𝐵)) ≠ -∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞) = +∞)
4340, 41, 42syl2anc 694 . . . . . . 7 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞) = +∞)
4443adantr 480 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ((Σ^‘(𝑘𝐴𝐵)) +𝑒 +∞) = +∞)
4516adantr 480 . . . . . . . 8 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) ∈ ℝ*)
46 id 22 . . . . . . . . . . 11 ((Σ^‘(𝑘𝐴𝐶)) = +∞ → (Σ^‘(𝑘𝐴𝐶)) = +∞)
4746eqcomd 2657 . . . . . . . . . 10 ((Σ^‘(𝑘𝐴𝐶)) = +∞ → +∞ = (Σ^‘(𝑘𝐴𝐶)))
4847adantl 481 . . . . . . . . 9 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐴𝐶)))
4922, 5sseldi 3634 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐶 ∈ ℝ*)
5049, 13xadd0ge2 39870 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐶 ≤ (𝐵 +𝑒 𝐶))
513, 4, 5, 15, 50sge0lempt 40945 . . . . . . . . . 10 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5251adantr 480 . . . . . . . . 9 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5348, 52eqbrtrd 4707 . . . . . . . 8 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → +∞ ≤ (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5445, 53xrgepnfd 39860 . . . . . . 7 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = +∞)
5554eqcomd 2657 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → +∞ = (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))))
5639, 44, 553eqtrrd 2690 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
5756adantlr 751 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
58 simpl 472 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ))
59 simpr 476 . . . . . . 7 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞)
604, 8sge0repnf 40921 . . . . . . . 8 (𝜑 → ((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞))
6160adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → ((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞))
6259, 61mpbird 247 . . . . . 6 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
6362adantlr 751 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
644ad2antrr 762 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → 𝐴𝑉)
65 nfcv 2793 . . . . . . . . . . . . . 14 𝑘Σ^
66 nfmpt1 4780 . . . . . . . . . . . . . 14 𝑘(𝑘𝐴𝐵)
6765, 66nffv 6236 . . . . . . . . . . . . 13 𝑘^‘(𝑘𝐴𝐵))
68 nfcv 2793 . . . . . . . . . . . . 13 𝑘
6967, 68nfel 2806 . . . . . . . . . . . 12 𝑘^‘(𝑘𝐴𝐵)) ∈ ℝ
703, 69nfan 1868 . . . . . . . . . . 11 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
71 nfv 1883 . . . . . . . . . . 11 𝑘 𝑗𝐴
7270, 71nfan 1868 . . . . . . . . . 10 𝑘((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴)
73 nfcsb1v 3582 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐵
7473nfel1 2808 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐵 ∈ (0[,)+∞)
7572, 74nfim 1865 . . . . . . . . 9 𝑘(((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
76 eleq1 2718 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
7776anbi2d 740 . . . . . . . . . 10 (𝑘 = 𝑗 → (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) ↔ ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴)))
78 csbeq1a 3575 . . . . . . . . . . 11 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
7978eleq1d 2715 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐵 ∈ (0[,)+∞)))
8077, 79imbi12d 333 . . . . . . . . 9 (𝑘 = 𝑗 → ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞)) ↔ (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))))
814adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐴𝑉)
8213adantlr 751 . . . . . . . . . 10 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
83 simpr 476 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
8470, 81, 82, 83sge0rernmpt 40957 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
8575, 80, 84chvar 2298 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
8685adantlr 751 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ (0[,)+∞))
87 nfmpt1 4780 . . . . . . . . . . . . . 14 𝑘(𝑘𝐴𝐶)
8865, 87nffv 6236 . . . . . . . . . . . . 13 𝑘^‘(𝑘𝐴𝐶))
8988, 68nfel 2806 . . . . . . . . . . . 12 𝑘^‘(𝑘𝐴𝐶)) ∈ ℝ
903, 89nfan 1868 . . . . . . . . . . 11 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
9190, 71nfan 1868 . . . . . . . . . 10 𝑘((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴)
92 nfcsb1v 3582 . . . . . . . . . . 11 𝑘𝑗 / 𝑘𝐶
9392nfel1 2808 . . . . . . . . . 10 𝑘𝑗 / 𝑘𝐶 ∈ (0[,)+∞)
9491, 93nfim 1865 . . . . . . . . 9 𝑘(((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
9576anbi2d 740 . . . . . . . . . 10 (𝑘 = 𝑗 → (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) ↔ ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴)))
96 csbeq1a 3575 . . . . . . . . . . 11 (𝑘 = 𝑗𝐶 = 𝑗 / 𝑘𝐶)
9796eleq1d 2715 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐶 ∈ (0[,)+∞) ↔ 𝑗 / 𝑘𝐶 ∈ (0[,)+∞)))
9895, 97imbi12d 333 . . . . . . . . 9 (𝑘 = 𝑗 → ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,)+∞)) ↔ (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))))
994adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → 𝐴𝑉)
1005adantlr 751 . . . . . . . . . 10 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
101 simpr 476 . . . . . . . . . 10 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
10290, 99, 100, 101sge0rernmpt 40957 . . . . . . . . 9 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ (0[,)+∞))
10394, 98, 102chvar 2298 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
104103adantllr 755 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) ∧ 𝑗𝐴) → 𝑗 / 𝑘𝐶 ∈ (0[,)+∞))
105 nfcv 2793 . . . . . . . . . 10 𝑗𝐵
106105, 73, 78cbvmpt 4782 . . . . . . . . 9 (𝑘𝐴𝐵) = (𝑗𝐴𝑗 / 𝑘𝐵)
107106fveq2i 6232 . . . . . . . 8 ^‘(𝑘𝐴𝐵)) = (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵))
108 simplr 807 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
109107, 108syl5eqelr 2735 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) ∈ ℝ)
110 nfcv 2793 . . . . . . . . . 10 𝑗𝐶
111110, 92, 96cbvmpt 4782 . . . . . . . . 9 (𝑘𝐴𝐶) = (𝑗𝐴𝑗 / 𝑘𝐶)
112111fveq2i 6232 . . . . . . . 8 ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶))
113 simpr 476 . . . . . . . 8 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ)
114112, 113syl5eqelr 2735 . . . . . . 7 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑗𝐴𝑗 / 𝑘𝐶)) ∈ ℝ)
11564, 86, 104, 109, 114sge0xaddlem2 40969 . . . . . 6 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) +𝑒^‘(𝑗𝐴𝑗 / 𝑘𝐶))))
116 nfcv 2793 . . . . . . . . 9 𝑗(𝐵 +𝑒 𝐶)
117 nfcv 2793 . . . . . . . . . 10 𝑘 +𝑒
11873, 117, 92nfov 6716 . . . . . . . . 9 𝑘(𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶)
11978, 96oveq12d 6708 . . . . . . . . 9 (𝑘 = 𝑗 → (𝐵 +𝑒 𝐶) = (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))
120116, 118, 119cbvmpt 4782 . . . . . . . 8 (𝑘𝐴 ↦ (𝐵 +𝑒 𝐶)) = (𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))
121120fveq2i 6232 . . . . . . 7 ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = (Σ^‘(𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶)))
122107, 112oveq12i 6702 . . . . . . 7 ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) +𝑒^‘(𝑗𝐴𝑗 / 𝑘𝐶)))
123121, 122eqeq12i 2665 . . . . . 6 ((Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))) ↔ (Σ^‘(𝑗𝐴 ↦ (𝑗 / 𝑘𝐵 +𝑒 𝑗 / 𝑘𝐶))) = ((Σ^‘(𝑗𝐴𝑗 / 𝑘𝐵)) +𝑒^‘(𝑗𝐴𝑗 / 𝑘𝐶))))
124115, 123sylibr 224 . . . . 5 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12558, 63, 124syl2anc 694 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ ¬ (Σ^‘(𝑘𝐴𝐶)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12657, 125pm2.61dan 849 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12731, 37, 126syl2anc 694 . 2 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
12830, 127pm2.61dan 849 1 (𝜑 → (Σ^‘(𝑘𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘𝐴𝐵)) +𝑒^‘(𝑘𝐴𝐶))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wnf 1748  wcel 2030  wne 2823  Vcvv 3231  csb 3566   class class class wbr 4685  cmpt 4762  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111  cle 10113   +𝑒 cxad 11982  [,)cico 12215  [,]cicc 12216  Σ^csumge0 40897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xadd 11985  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-sumge0 40898
This theorem is referenced by:  ovnsubaddlem1  41105  hspmbllem2  41162  ovolval5lem1  41187
  Copyright terms: Public domain W3C validator