![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0splitmpt | Structured version Visualization version GIF version |
Description: Split a sum of nonnegative extended reals into two parts. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0splitmpt.xph | ⊢ Ⅎ𝑥𝜑 |
sge0splitmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0splitmpt.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
sge0splitmpt.in | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
sge0splitmpt.ac | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
sge0splitmpt.bc | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
sge0splitmpt | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0splitmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | sge0splitmpt.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | eqid 2760 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
4 | sge0splitmpt.in | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) | |
5 | sge0splitmpt.xph | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
6 | sge0splitmpt.ac | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
7 | 6 | adantlr 753 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
8 | simpll 807 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ ¬ 𝑥 ∈ 𝐴) → 𝜑) | |
9 | elunnel1 3897 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) | |
10 | 9 | adantll 752 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
11 | sge0splitmpt.bc | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) | |
12 | 8, 10, 11 | syl2anc 696 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) ∧ ¬ 𝑥 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
13 | 7, 12 | pm2.61dan 867 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∪ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
14 | eqid 2760 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) = (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) | |
15 | 5, 13, 14 | fmptdf 6551 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶):(𝐴 ∪ 𝐵)⟶(0[,]+∞)) |
16 | 1, 2, 3, 4, 15 | sge0split 41147 | . 2 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒 (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵)))) |
17 | ssun1 3919 | . . . . . 6 ⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | |
18 | 17 | resmpti 39876 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
19 | 18 | fveq2i 6356 | . . . 4 ⊢ (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) = (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) |
20 | ssun2 3920 | . . . . . 6 ⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) | |
21 | 20 | resmpti 39876 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
22 | 21 | fveq2i 6356 | . . . 4 ⊢ (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵)) = (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)) |
23 | 19, 22 | oveq12i 6826 | . . 3 ⊢ ((Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒 (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶))) |
24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → ((Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐴)) +𝑒 (Σ^‘((𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶) ↾ 𝐵))) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) |
25 | 16, 24 | eqtrd 2794 | 1 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ (𝐴 ∪ 𝐵) ↦ 𝐶)) = ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑥 ∈ 𝐵 ↦ 𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 Ⅎwnf 1857 ∈ wcel 2139 ∪ cun 3713 ∩ cin 3714 ∅c0 4058 ↦ cmpt 4881 ↾ cres 5268 ‘cfv 6049 (class class class)co 6814 0cc0 10148 +∞cpnf 10283 +𝑒 cxad 12157 [,]cicc 12391 Σ^csumge0 41100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-sup 8515 df-oi 8582 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-z 11590 df-uz 11900 df-rp 12046 df-xadd 12160 df-ico 12394 df-icc 12395 df-fz 12540 df-fzo 12680 df-seq 13016 df-exp 13075 df-hash 13332 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-clim 14438 df-sum 14636 df-sumge0 41101 |
This theorem is referenced by: sge0ss 41150 sge0iunmptlemfi 41151 sge0p1 41152 sge0splitsn 41179 ismeannd 41205 isomenndlem 41268 hoidmvlelem2 41334 |
Copyright terms: Public domain | W3C validator |