Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0seq Structured version   Visualization version   GIF version

Theorem sge0seq 40981
Description: A series of nonnegative reals agrees with the generalized sum of nonnegative reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
sge0seq.m (𝜑𝑀 ∈ ℤ)
sge0seq.z 𝑍 = (ℤ𝑀)
sge0seq.f (𝜑𝐹:𝑍⟶(0[,)+∞))
sge0seq.g 𝐺 = seq𝑀( + , 𝐹)
Assertion
Ref Expression
sge0seq (𝜑 → (Σ^𝐹) = sup(ran 𝐺, ℝ*, < ))

Proof of Theorem sge0seq
Dummy variables 𝑖 𝑘 𝑗 𝑤 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0seq.z . . . . . . 7 𝑍 = (ℤ𝑀)
2 sge0seq.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
3 rge0ssre 12318 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
4 sge0seq.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶(0[,)+∞))
54ffvelrnda 6399 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (0[,)+∞))
63, 5sseldi 3634 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
7 readdcl 10057 . . . . . . . 8 ((𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ) → (𝑘 + 𝑖) ∈ ℝ)
87adantl 481 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ ℝ ∧ 𝑖 ∈ ℝ)) → (𝑘 + 𝑖) ∈ ℝ)
91, 2, 6, 8seqf 12862 . . . . . 6 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
10 sge0seq.g . . . . . . . 8 𝐺 = seq𝑀( + , 𝐹)
1110a1i 11 . . . . . . 7 (𝜑𝐺 = seq𝑀( + , 𝐹))
1211feq1d 6068 . . . . . 6 (𝜑 → (𝐺:𝑍⟶ℝ ↔ seq𝑀( + , 𝐹):𝑍⟶ℝ))
139, 12mpbird 247 . . . . 5 (𝜑𝐺:𝑍⟶ℝ)
14 frn 6091 . . . . 5 (𝐺:𝑍⟶ℝ → ran 𝐺 ⊆ ℝ)
1513, 14syl 17 . . . 4 (𝜑 → ran 𝐺 ⊆ ℝ)
16 ressxr 10121 . . . . 5 ℝ ⊆ ℝ*
1716a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℝ*)
1815, 17sstrd 3646 . . 3 (𝜑 → ran 𝐺 ⊆ ℝ*)
19 fvex 6239 . . . . . 6 (ℤ𝑀) ∈ V
201, 19eqeltri 2726 . . . . 5 𝑍 ∈ V
2120a1i 11 . . . 4 (𝜑𝑍 ∈ V)
22 icossicc 12298 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
2322a1i 11 . . . . 5 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
244, 23fssd 6095 . . . 4 (𝜑𝐹:𝑍⟶(0[,]+∞))
2521, 24sge0xrcl 40920 . . 3 (𝜑 → (Σ^𝐹) ∈ ℝ*)
26 simpr 476 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → 𝑧 ∈ ran 𝐺)
27 ffn 6083 . . . . . . . . 9 (𝐺:𝑍⟶ℝ → 𝐺 Fn 𝑍)
2813, 27syl 17 . . . . . . . 8 (𝜑𝐺 Fn 𝑍)
29 fvelrnb 6282 . . . . . . . 8 (𝐺 Fn 𝑍 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
3028, 29syl 17 . . . . . . 7 (𝜑 → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
3130adantr 480 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → (𝑧 ∈ ran 𝐺 ↔ ∃𝑗𝑍 (𝐺𝑗) = 𝑧))
3226, 31mpbid 222 . . . . 5 ((𝜑𝑧 ∈ ran 𝐺) → ∃𝑗𝑍 (𝐺𝑗) = 𝑧)
3322, 5sseldi 3634 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ (0[,]+∞))
34 elfzuz 12376 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
3534, 1syl6eleqr 2741 . . . . . . . . . . . . 13 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
3635ssriv 3640 . . . . . . . . . . . 12 (𝑀...𝑗) ⊆ 𝑍
3736a1i 11 . . . . . . . . . . 11 (𝜑 → (𝑀...𝑗) ⊆ 𝑍)
3821, 33, 37sge0lessmpt 40934 . . . . . . . . . 10 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
39383ad2ant1 1102 . . . . . . . . 9 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
40 fzfid 12812 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...𝑗) ∈ Fin)
4135, 5sylan2 490 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ (0[,)+∞))
4240, 41sge0fsummpt 40925 . . . . . . . . . . . . 13 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
43423ad2ant1 1102 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
44 simpll 805 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝜑)
4535adantl 481 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘𝑍)
46 eqidd 2652 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
4744, 45, 46syl2anc 694 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) = (𝐹𝑘))
481eleq2i 2722 . . . . . . . . . . . . . . . 16 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
4948biimpi 206 . . . . . . . . . . . . . . 15 (𝑗𝑍𝑗 ∈ (ℤ𝑀))
5049adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
516recnd 10106 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
5244, 45, 51syl2anc 694 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
5347, 50, 52fsumser 14505 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑗))
54533adant3 1101 . . . . . . . . . . . 12 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑗))
5543, 54eqtrd 2685 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) = (seq𝑀( + , 𝐹)‘𝑗))
5610eqcomi 2660 . . . . . . . . . . . . 13 seq𝑀( + , 𝐹) = 𝐺
5756fveq1i 6230 . . . . . . . . . . . 12 (seq𝑀( + , 𝐹)‘𝑗) = (𝐺𝑗)
5857a1i 11 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (seq𝑀( + , 𝐹)‘𝑗) = (𝐺𝑗))
59 simp3 1083 . . . . . . . . . . 11 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝐺𝑗) = 𝑧)
6055, 58, 593eqtrrd 2690 . . . . . . . . . 10 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧 = (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))))
614feqmptd 6288 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑘𝑍 ↦ (𝐹𝑘)))
6261fveq2d 6233 . . . . . . . . . . 11 (𝜑 → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
63623ad2ant1 1102 . . . . . . . . . 10 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
6460, 63breq12d 4698 . . . . . . . . 9 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → (𝑧 ≤ (Σ^𝐹) ↔ (Σ^‘(𝑘 ∈ (𝑀...𝑗) ↦ (𝐹𝑘))) ≤ (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘)))))
6539, 64mpbird 247 . . . . . . . 8 ((𝜑𝑗𝑍 ∧ (𝐺𝑗) = 𝑧) → 𝑧 ≤ (Σ^𝐹))
66653exp 1283 . . . . . . 7 (𝜑 → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹))))
6766adantr 480 . . . . . 6 ((𝜑𝑧 ∈ ran 𝐺) → (𝑗𝑍 → ((𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹))))
6867rexlimdv 3059 . . . . 5 ((𝜑𝑧 ∈ ran 𝐺) → (∃𝑗𝑍 (𝐺𝑗) = 𝑧𝑧 ≤ (Σ^𝐹)))
6932, 68mpd 15 . . . 4 ((𝜑𝑧 ∈ ran 𝐺) → 𝑧 ≤ (Σ^𝐹))
7069ralrimiva 2995 . . 3 (𝜑 → ∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹))
71 nfv 1883 . . . . . . . 8 𝑘((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹))
7220a1i 11 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → 𝑍 ∈ V)
735ad4ant14 1317 . . . . . . . 8 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ (0[,)+∞))
74 simplr 807 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → 𝑧 ∈ ℝ)
75 simpr 476 . . . . . . . . . 10 ((𝜑𝑧 < (Σ^𝐹)) → 𝑧 < (Σ^𝐹))
7662adantr 480 . . . . . . . . . 10 ((𝜑𝑧 < (Σ^𝐹)) → (Σ^𝐹) = (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
7775, 76breqtrd 4711 . . . . . . . . 9 ((𝜑𝑧 < (Σ^𝐹)) → 𝑧 < (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
7877adantlr 751 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → 𝑧 < (Σ^‘(𝑘𝑍 ↦ (𝐹𝑘))))
7971, 72, 73, 74, 78sge0gtfsumgt 40978 . . . . . . 7 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → ∃𝑤 ∈ (𝒫 𝑍 ∩ Fin)𝑧 < Σ𝑘𝑤 (𝐹𝑘))
8023ad2ant1 1102 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → 𝑀 ∈ ℤ)
81 elpwinss 39530 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → 𝑤𝑍)
82813ad2ant2 1103 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → 𝑤𝑍)
83 elinel2 3833 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → 𝑤 ∈ Fin)
84833ad2ant2 1103 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → 𝑤 ∈ Fin)
8580, 1, 82, 84uzfissfz 39855 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → ∃𝑗𝑍 𝑤 ⊆ (𝑀...𝑗))
86853adant1r 1359 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → ∃𝑗𝑍 𝑤 ⊆ (𝑀...𝑗))
87 simpl1r 1133 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → 𝑧 ∈ ℝ)
8883adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) → 𝑤 ∈ Fin)
8961, 6fmpt3d 6426 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:𝑍⟶ℝ)
9089ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑤) → 𝐹:𝑍⟶ℝ)
9181sselda 3636 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑘𝑤) → 𝑘𝑍)
9291adantll 750 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑤) → 𝑘𝑍)
9390, 92ffvelrnd 6400 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑘𝑤) → (𝐹𝑘) ∈ ℝ)
9488, 93fsumrecl 14509 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ∈ (𝒫 𝑍 ∩ Fin)) → Σ𝑘𝑤 (𝐹𝑘) ∈ ℝ)
9594ad4ant13 1315 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ∈ ℝ)
96953adantl3 1239 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ∈ ℝ)
9735, 6sylan2 490 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℝ)
9840, 97fsumrecl 14509 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ℝ)
9998ad3antrrr 766 . . . . . . . . . . . . . . 15 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ℝ)
100993adantl3 1239 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ℝ)
101 simpl3 1086 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → 𝑧 < Σ𝑘𝑤 (𝐹𝑘))
10240adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ⊆ (𝑀...𝑗)) → (𝑀...𝑗) ∈ Fin)
10397adantlr 751 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ⊆ (𝑀...𝑗)) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℝ)
104 0xr 10124 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℝ*
105104a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → 0 ∈ ℝ*)
106 pnfxr 10130 . . . . . . . . . . . . . . . . . . . . 21 +∞ ∈ ℝ*
107106a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → +∞ ∈ ℝ*)
108 icogelb 12263 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ (𝐹𝑘) ∈ (0[,)+∞)) → 0 ≤ (𝐹𝑘))
109105, 107, 5, 108syl3anc 1366 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))
11035, 109sylan2 490 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (𝑀...𝑗)) → 0 ≤ (𝐹𝑘))
111110adantlr 751 . . . . . . . . . . . . . . . . 17 (((𝜑𝑤 ⊆ (𝑀...𝑗)) ∧ 𝑘 ∈ (𝑀...𝑗)) → 0 ≤ (𝐹𝑘))
112 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑤 ⊆ (𝑀...𝑗)) → 𝑤 ⊆ (𝑀...𝑗))
113102, 103, 111, 112fsumless 14572 . . . . . . . . . . . . . . . 16 ((𝜑𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ≤ Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
114113adantlr 751 . . . . . . . . . . . . . . 15 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ≤ Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
1151143ad2antl1 1243 . . . . . . . . . . . . . 14 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → Σ𝑘𝑤 (𝐹𝑘) ≤ Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
11687, 96, 100, 101, 115ltletrd 10235 . . . . . . . . . . . . 13 ((((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) ∧ 𝑤 ⊆ (𝑀...𝑗)) → 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
117116ex 449 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → (𝑤 ⊆ (𝑀...𝑗) → 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)))
118117reximdv 3045 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → (∃𝑗𝑍 𝑤 ⊆ (𝑀...𝑗) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)))
11986, 118mpd 15 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑤 ∈ (𝒫 𝑍 ∩ Fin) ∧ 𝑧 < Σ𝑘𝑤 (𝐹𝑘)) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
1201193exp 1283 . . . . . . . . 9 ((𝜑𝑧 ∈ ℝ) → (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → (𝑧 < Σ𝑘𝑤 (𝐹𝑘) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))))
121120adantr 480 . . . . . . . 8 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → (𝑤 ∈ (𝒫 𝑍 ∩ Fin) → (𝑧 < Σ𝑘𝑤 (𝐹𝑘) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))))
122121rexlimdv 3059 . . . . . . 7 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → (∃𝑤 ∈ (𝒫 𝑍 ∩ Fin)𝑧 < Σ𝑘𝑤 (𝐹𝑘) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)))
12379, 122mpd 15 . . . . . 6 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → ∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
1249ffnd 6084 . . . . . . . . . . . . . . 15 (𝜑 → seq𝑀( + , 𝐹) Fn 𝑍)
125124adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → seq𝑀( + , 𝐹) Fn 𝑍)
12650, 48sylibr 224 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → 𝑗𝑍)
127 fnfvelrn 6396 . . . . . . . . . . . . . 14 ((seq𝑀( + , 𝐹) Fn 𝑍𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ran seq𝑀( + , 𝐹))
128125, 126, 127syl2anc 694 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ran seq𝑀( + , 𝐹))
12910a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑍) → 𝐺 = seq𝑀( + , 𝐹))
130129rneqd 5385 . . . . . . . . . . . . . 14 ((𝜑𝑗𝑍) → ran 𝐺 = ran seq𝑀( + , 𝐹))
13153, 130eleq12d 2724 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺 ↔ (seq𝑀( + , 𝐹)‘𝑗) ∈ ran seq𝑀( + , 𝐹)))
132128, 131mpbird 247 . . . . . . . . . . . 12 ((𝜑𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺)
133132adantlr 751 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℝ) ∧ 𝑗𝑍) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺)
1341333adant3 1101 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑗𝑍𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)) → Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺)
135 simp3 1083 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℝ) ∧ 𝑗𝑍𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)) → 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘))
136 breq2 4689 . . . . . . . . . . 11 (𝑦 = Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) → (𝑧 < 𝑦𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)))
137136rspcev 3340 . . . . . . . . . 10 ((Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) ∈ ran 𝐺𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)
138134, 135, 137syl2anc 694 . . . . . . . . 9 (((𝜑𝑧 ∈ ℝ) ∧ 𝑗𝑍𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘)) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)
1391383exp 1283 . . . . . . . 8 ((𝜑𝑧 ∈ ℝ) → (𝑗𝑍 → (𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)))
140139rexlimdv 3059 . . . . . . 7 ((𝜑𝑧 ∈ ℝ) → (∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))
141140adantr 480 . . . . . 6 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → (∃𝑗𝑍 𝑧 < Σ𝑘 ∈ (𝑀...𝑗)(𝐹𝑘) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))
142123, 141mpd 15 . . . . 5 (((𝜑𝑧 ∈ ℝ) ∧ 𝑧 < (Σ^𝐹)) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦)
143142ex 449 . . . 4 ((𝜑𝑧 ∈ ℝ) → (𝑧 < (Σ^𝐹) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))
144143ralrimiva 2995 . . 3 (𝜑 → ∀𝑧 ∈ ℝ (𝑧 < (Σ^𝐹) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))
145 supxr2 12182 . . 3 (((ran 𝐺 ⊆ ℝ* ∧ (Σ^𝐹) ∈ ℝ*) ∧ (∀𝑧 ∈ ran 𝐺 𝑧 ≤ (Σ^𝐹) ∧ ∀𝑧 ∈ ℝ (𝑧 < (Σ^𝐹) → ∃𝑦 ∈ ran 𝐺 𝑧 < 𝑦))) → sup(ran 𝐺, ℝ*, < ) = (Σ^𝐹))
14618, 25, 70, 144, 145syl22anc 1367 . 2 (𝜑 → sup(ran 𝐺, ℝ*, < ) = (Σ^𝐹))
147146eqcomd 2657 1 (𝜑 → (Σ^𝐹) = sup(ran 𝐺, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  cin 3606  wss 3607  𝒫 cpw 4191   class class class wbr 4685  cmpt 4762  ran crn 5144   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  Fincfn 7997  supcsup 8387  cc 9972  cr 9973  0cc0 9974   + caddc 9977  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cz 11415  cuz 11725  [,)cico 12215  [,]cicc 12216  ...cfz 12364  seqcseq 12841  Σcsu 14460  Σ^csumge0 40897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-sumge0 40898
This theorem is referenced by:  voliunsge0lem  41007  ovolval2  41179
  Copyright terms: Public domain W3C validator