![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0rnre | Structured version Visualization version GIF version |
Description: When Σ^ is applied to nonnegative real numbers the range used in its definition is a subset of the reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0rnre.1 | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) |
Ref | Expression |
---|---|
sge0rnre | ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel2 3949 | . . . . 5 ⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ Fin) | |
2 | 1 | adantl 467 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → 𝑥 ∈ Fin) |
3 | rge0ssre 12486 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
4 | sge0rnre.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) | |
5 | 4 | ad2antrr 697 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) → 𝐹:𝑋⟶(0[,)+∞)) |
6 | elinel1 3948 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ∈ 𝒫 𝑋) | |
7 | elpwi 4305 | . . . . . . . . . 10 ⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) | |
8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) → 𝑥 ⊆ 𝑋) |
9 | 8 | adantr 466 | . . . . . . . 8 ⊢ ((𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑥 ⊆ 𝑋) |
10 | simpr 471 | . . . . . . . 8 ⊢ ((𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑥) | |
11 | 9, 10 | sseldd 3751 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝒫 𝑋 ∩ Fin) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑋) |
12 | 11 | adantll 685 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ 𝑋) |
13 | 5, 12 | ffvelrnd 6503 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) → (𝐹‘𝑦) ∈ (0[,)+∞)) |
14 | 3, 13 | sseldi 3748 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) ∧ 𝑦 ∈ 𝑥) → (𝐹‘𝑦) ∈ ℝ) |
15 | 2, 14 | fsumrecl 14672 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝑋 ∩ Fin)) → Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ ℝ) |
16 | 15 | ralrimiva 3114 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ ℝ) |
17 | eqid 2770 | . . 3 ⊢ (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) = (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) | |
18 | 17 | rnmptss 6534 | . 2 ⊢ (∀𝑥 ∈ (𝒫 𝑋 ∩ Fin)Σ𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ ℝ → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ⊆ ℝ) |
19 | 16, 18 | syl 17 | 1 ⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)) ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2144 ∀wral 3060 ∩ cin 3720 ⊆ wss 3721 𝒫 cpw 4295 ↦ cmpt 4861 ran crn 5250 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 Fincfn 8108 ℝcr 10136 0cc0 10137 +∞cpnf 10272 [,)cico 12381 Σcsu 14623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-sup 8503 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-n0 11494 df-z 11579 df-uz 11888 df-rp 12035 df-ico 12385 df-fz 12533 df-fzo 12673 df-seq 13008 df-exp 13067 df-hash 13321 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-clim 14426 df-sum 14624 |
This theorem is referenced by: fsumlesge0 41105 sge0supre 41117 sge0less 41120 sge0ltfirp 41128 sge0resplit 41134 sge0split 41137 |
Copyright terms: Public domain | W3C validator |