Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0revalmpt Structured version   Visualization version   GIF version

Theorem sge0revalmpt 40913
Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0revalmpt.1 𝑥𝜑
sge0revalmpt.2 (𝜑𝐴𝑉)
sge0revalmpt.3 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
Assertion
Ref Expression
sge0revalmpt (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵), ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem sge0revalmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sge0revalmpt.2 . . 3 (𝜑𝐴𝑉)
2 sge0revalmpt.1 . . . 4 𝑥𝜑
3 sge0revalmpt.3 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
4 eqid 2651 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
52, 3, 4fmptdf 6427 . . 3 (𝜑 → (𝑥𝐴𝐵):𝐴⟶(0[,)+∞))
61, 5sge0reval 40907 . 2 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)), ℝ*, < ))
7 fveq2 6229 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑥𝐴𝐵)‘𝑧) = ((𝑥𝐴𝐵)‘𝑥))
8 nfcv 2793 . . . . . . . 8 𝑥𝑦
9 nfcv 2793 . . . . . . . 8 𝑧𝑦
10 nfmpt1 4780 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
11 nfcv 2793 . . . . . . . . 9 𝑥𝑧
1210, 11nffv 6236 . . . . . . . 8 𝑥((𝑥𝐴𝐵)‘𝑧)
13 nfcv 2793 . . . . . . . 8 𝑧((𝑥𝐴𝐵)‘𝑥)
147, 8, 9, 12, 13cbvsum 14469 . . . . . . 7 Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧) = Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥)
1514a1i 11 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧) = Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥))
16 nfv 1883 . . . . . . . . 9 𝑥 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
172, 16nfan 1868 . . . . . . . 8 𝑥(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
18 elpwinss 39530 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
1918adantr 480 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑦𝐴)
20 simpr 476 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝑦)
2119, 20sseldd 3637 . . . . . . . . . . 11 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝐴)
2221adantll 750 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝐴)
23 simpll 805 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
2423, 22, 3syl2anc 694 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝐵 ∈ (0[,)+∞))
254fvmpt2 6330 . . . . . . . . . 10 ((𝑥𝐴𝐵 ∈ (0[,)+∞)) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2622, 24, 25syl2anc 694 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
2726ex 449 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑥𝑦 → ((𝑥𝐴𝐵)‘𝑥) = 𝐵))
2817, 27ralrimi 2986 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
29 sumeq2 14468 . . . . . . 7 (∀𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = 𝐵 → Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = Σ𝑥𝑦 𝐵)
3028, 29syl 17 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦 ((𝑥𝐴𝐵)‘𝑥) = Σ𝑥𝑦 𝐵)
3115, 30eqtrd 2685 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧) = Σ𝑥𝑦 𝐵)
3231mpteq2dva 4777 . . . 4 (𝜑 → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)) = (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵))
3332rneqd 5385 . . 3 (𝜑 → ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)) = ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵))
3433supeq1d 8393 . 2 (𝜑 → sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑧𝑦 ((𝑥𝐴𝐵)‘𝑧)), ℝ*, < ) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵), ℝ*, < ))
356, 34eqtrd 2685 1 (𝜑 → (Σ^‘(𝑥𝐴𝐵)) = sup(ran (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑥𝑦 𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wnf 1748  wcel 2030  wral 2941  cin 3606  wss 3607  𝒫 cpw 4191  cmpt 4762  ran crn 5144  cfv 5926  (class class class)co 6690  Fincfn 7997  supcsup 8387  0cc0 9974  +∞cpnf 10109  *cxr 10111   < clt 10112  [,)cico 12215  Σcsu 14460  Σ^csumge0 40897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-ico 12219  df-icc 12220  df-fz 12365  df-seq 12842  df-sum 14461  df-sumge0 40898
This theorem is referenced by:  sge0f1o  40917  sge0xaddlem1  40968  sge0xaddlem2  40969  sge0reuz  40982
  Copyright terms: Public domain W3C validator