![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0rernmpt | Structured version Visualization version GIF version |
Description: If the sum of nonnegative extended reals is not +∞ then no term is +∞. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
sge0rernmpt.xph | ⊢ Ⅎ𝑥𝜑 |
sge0rernmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
sge0rernmpt.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
sge0rernmpt.re | ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) |
Ref | Expression |
---|---|
sge0rernmpt | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10249 | . . 3 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ∈ ℝ*) |
3 | pnfxr 10255 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | 3 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → +∞ ∈ ℝ*) |
5 | iccssxr 12420 | . . 3 ⊢ (0[,]+∞) ⊆ ℝ* | |
6 | sge0rernmpt.b | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
7 | 5, 6 | sseldi 3730 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
8 | iccgelb 12394 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐵 ∈ (0[,]+∞)) → 0 ≤ 𝐵) | |
9 | 2, 4, 6, 8 | syl3anc 1463 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) |
10 | simpr 479 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → ¬ 𝐵 < +∞) | |
11 | nltpnft 12159 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ* → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞)) | |
12 | 7, 11 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞)) |
13 | 12 | adantr 472 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞)) |
14 | 10, 13 | mpbird 247 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → 𝐵 = +∞) |
15 | 14 | eqcomd 2754 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → +∞ = 𝐵) |
16 | simpr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
17 | eqid 2748 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
18 | 17 | elrnmpt1 5517 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ (0[,]+∞)) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
19 | 16, 6, 18 | syl2anc 696 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
20 | 19 | adantr 472 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
21 | 15, 20 | eqeltrd 2827 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → +∞ ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
22 | sge0rernmpt.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
23 | sge0rernmpt.xph | . . . . . 6 ⊢ Ⅎ𝑥𝜑 | |
24 | 23, 6, 17 | fmptdf 6538 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
25 | sge0rernmpt.re | . . . . 5 ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) | |
26 | 22, 24, 25 | sge0rern 41077 | . . . 4 ⊢ (𝜑 → ¬ +∞ ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
27 | 26 | ad2antrr 764 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 𝐵 < +∞) → ¬ +∞ ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
28 | 21, 27 | condan 870 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 < +∞) |
29 | 2, 4, 7, 9, 28 | elicod 12388 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1620 Ⅎwnf 1845 ∈ wcel 2127 class class class wbr 4792 ↦ cmpt 4869 ran crn 5255 ‘cfv 6037 (class class class)co 6801 ℝcr 10098 0cc0 10099 +∞cpnf 10234 ℝ*cxr 10236 < clt 10237 ≤ cle 10238 [,)cico 12341 [,]cicc 12342 Σ^csumge0 41051 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-inf2 8699 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-fal 1626 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-se 5214 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-isom 6046 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8501 df-oi 8568 df-card 8926 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-n0 11456 df-z 11541 df-uz 11851 df-rp 11997 df-ico 12345 df-icc 12346 df-fz 12491 df-fzo 12631 df-seq 12967 df-exp 13026 df-hash 13283 df-cj 14009 df-re 14010 df-im 14011 df-sqrt 14145 df-abs 14146 df-clim 14389 df-sum 14587 df-sumge0 41052 |
This theorem is referenced by: sge0ltfirpmpt2 41115 sge0xadd 41124 |
Copyright terms: Public domain | W3C validator |