![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0repnf | Structured version Visualization version GIF version |
Description: The of nonnegative extended reals is a real number if and only if it is not +∞. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0repnf.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
sge0repnf.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
Ref | Expression |
---|---|
sge0repnf | ⊢ (𝜑 → ((Σ^‘𝐹) ∈ ℝ ↔ ¬ (Σ^‘𝐹) = +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renepnf 10275 | . . . 4 ⊢ ((Σ^‘𝐹) ∈ ℝ → (Σ^‘𝐹) ≠ +∞) | |
2 | 1 | neneqd 2933 | . . 3 ⊢ ((Σ^‘𝐹) ∈ ℝ → ¬ (Σ^‘𝐹) = +∞) |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ((Σ^‘𝐹) ∈ ℝ → ¬ (Σ^‘𝐹) = +∞)) |
4 | rge0ssre 12469 | . . . 4 ⊢ (0[,)+∞) ⊆ ℝ | |
5 | 0xr 10274 | . . . . . 6 ⊢ 0 ∈ ℝ* | |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → 0 ∈ ℝ*) |
7 | pnfxr 10280 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
8 | 7 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → +∞ ∈ ℝ*) |
9 | sge0repnf.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
10 | sge0repnf.f | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) | |
11 | 9, 10 | sge0xrcl 41101 | . . . . . 6 ⊢ (𝜑 → (Σ^‘𝐹) ∈ ℝ*) |
12 | 11 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → (Σ^‘𝐹) ∈ ℝ*) |
13 | 9, 10 | sge0ge0 41100 | . . . . . 6 ⊢ (𝜑 → 0 ≤ (Σ^‘𝐹)) |
14 | 13 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → 0 ≤ (Σ^‘𝐹)) |
15 | simpr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → ¬ (Σ^‘𝐹) = +∞) | |
16 | nltpnft 12184 | . . . . . . . . 9 ⊢ ((Σ^‘𝐹) ∈ ℝ* → ((Σ^‘𝐹) = +∞ ↔ ¬ (Σ^‘𝐹) < +∞)) | |
17 | 11, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((Σ^‘𝐹) = +∞ ↔ ¬ (Σ^‘𝐹) < +∞)) |
18 | 17 | adantr 472 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → ((Σ^‘𝐹) = +∞ ↔ ¬ (Σ^‘𝐹) < +∞)) |
19 | 15, 18 | mtbid 313 | . . . . . 6 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → ¬ ¬ (Σ^‘𝐹) < +∞) |
20 | 19 | notnotrd 128 | . . . . 5 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → (Σ^‘𝐹) < +∞) |
21 | 6, 8, 12, 14, 20 | elicod 12413 | . . . 4 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → (Σ^‘𝐹) ∈ (0[,)+∞)) |
22 | 4, 21 | sseldi 3738 | . . 3 ⊢ ((𝜑 ∧ ¬ (Σ^‘𝐹) = +∞) → (Σ^‘𝐹) ∈ ℝ) |
23 | 22 | ex 449 | . 2 ⊢ (𝜑 → (¬ (Σ^‘𝐹) = +∞ → (Σ^‘𝐹) ∈ ℝ)) |
24 | 3, 23 | impbid 202 | 1 ⊢ (𝜑 → ((Σ^‘𝐹) ∈ ℝ ↔ ¬ (Σ^‘𝐹) = +∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1628 ∈ wcel 2135 class class class wbr 4800 ⟶wf 6041 ‘cfv 6045 (class class class)co 6809 ℝcr 10123 0cc0 10124 +∞cpnf 10259 ℝ*cxr 10261 < clt 10262 ≤ cle 10263 [,)cico 12366 [,]cicc 12367 Σ^csumge0 41078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-inf2 8707 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 ax-pre-sup 10202 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-fal 1634 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rmo 3054 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-se 5222 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-isom 6054 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-1st 7329 df-2nd 7330 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-1o 7725 df-oadd 7729 df-er 7907 df-en 8118 df-dom 8119 df-sdom 8120 df-fin 8121 df-sup 8509 df-oi 8576 df-card 8951 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-div 10873 df-nn 11209 df-2 11267 df-3 11268 df-n0 11481 df-z 11566 df-uz 11876 df-rp 12022 df-ico 12370 df-icc 12371 df-fz 12516 df-fzo 12656 df-seq 12992 df-exp 13051 df-hash 13308 df-cj 14034 df-re 14035 df-im 14036 df-sqrt 14170 df-abs 14171 df-clim 14414 df-sum 14612 df-sumge0 41079 |
This theorem is referenced by: sge0rern 41104 sge0supre 41105 sge0less 41108 sge0le 41123 sge0split 41125 sge0iunmpt 41134 sge0rpcpnf 41137 sge0xadd 41151 sge0repnfmpt 41155 sge0gtfsumgt 41159 omeiunltfirp 41235 hoidmv1lelem1 41307 hoidmv1lelem2 41308 hoidmv1lelem3 41309 hoidmv1le 41310 hoidmvlelem3 41313 hoidmvlelem5 41315 |
Copyright terms: Public domain | W3C validator |