Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0iun Structured version   Visualization version   GIF version

Theorem sge0iun 41147
Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0iun.a (𝜑𝐴𝑉)
sge0iun.b ((𝜑𝑥𝐴) → 𝐵𝑊)
sge0iun.x 𝑋 = 𝑥𝐴 𝐵
sge0iun.f (𝜑𝐹:𝑋⟶(0[,]+∞))
sge0iun.dj (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
sge0iun (𝜑 → (Σ^𝐹) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝐹𝐵)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem sge0iun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sge0iun.a . . 3 (𝜑𝐴𝑉)
2 sge0iun.b . . 3 ((𝜑𝑥𝐴) → 𝐵𝑊)
3 sge0iun.dj . . 3 (𝜑Disj 𝑥𝐴 𝐵)
4 sge0iun.f . . . . . 6 (𝜑𝐹:𝑋⟶(0[,]+∞))
54adantr 466 . . . . 5 ((𝜑𝑥𝐴) → 𝐹:𝑋⟶(0[,]+∞))
653adant3 1125 . . . 4 ((𝜑𝑥𝐴𝑦𝐵) → 𝐹:𝑋⟶(0[,]+∞))
7 ssiun2 4695 . . . . . . . 8 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
87adantl 467 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 𝑥𝐴 𝐵)
9 sge0iun.x . . . . . . . 8 𝑋 = 𝑥𝐴 𝐵
109eqcomi 2779 . . . . . . 7 𝑥𝐴 𝐵 = 𝑋
118, 10syl6sseq 3798 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑋)
12113adant3 1125 . . . . 5 ((𝜑𝑥𝐴𝑦𝐵) → 𝐵𝑋)
13 simp3 1131 . . . . 5 ((𝜑𝑥𝐴𝑦𝐵) → 𝑦𝐵)
1412, 13sseldd 3751 . . . 4 ((𝜑𝑥𝐴𝑦𝐵) → 𝑦𝑋)
156, 14ffvelrnd 6503 . . 3 ((𝜑𝑥𝐴𝑦𝐵) → (𝐹𝑦) ∈ (0[,]+∞))
161, 2, 3, 15sge0iunmpt 41146 . 2 (𝜑 → (Σ^‘(𝑦 𝑥𝐴 𝐵 ↦ (𝐹𝑦))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑦𝐵 ↦ (𝐹𝑦))))))
179feq2i 6177 . . . . . 6 (𝐹:𝑋⟶(0[,]+∞) ↔ 𝐹: 𝑥𝐴 𝐵⟶(0[,]+∞))
1817a1i 11 . . . . 5 (𝜑 → (𝐹:𝑋⟶(0[,]+∞) ↔ 𝐹: 𝑥𝐴 𝐵⟶(0[,]+∞)))
194, 18mpbid 222 . . . 4 (𝜑𝐹: 𝑥𝐴 𝐵⟶(0[,]+∞))
2019feqmptd 6391 . . 3 (𝜑𝐹 = (𝑦 𝑥𝐴 𝐵 ↦ (𝐹𝑦)))
2120fveq2d 6336 . 2 (𝜑 → (Σ^𝐹) = (Σ^‘(𝑦 𝑥𝐴 𝐵 ↦ (𝐹𝑦))))
225, 11fssresd 6211 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝐵):𝐵⟶(0[,]+∞))
2322feqmptd 6391 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝐵) = (𝑦𝐵 ↦ ((𝐹𝐵)‘𝑦)))
24 fvres 6348 . . . . . . . 8 (𝑦𝐵 → ((𝐹𝐵)‘𝑦) = (𝐹𝑦))
2524mpteq2ia 4872 . . . . . . 7 (𝑦𝐵 ↦ ((𝐹𝐵)‘𝑦)) = (𝑦𝐵 ↦ (𝐹𝑦))
2625a1i 11 . . . . . 6 ((𝜑𝑥𝐴) → (𝑦𝐵 ↦ ((𝐹𝐵)‘𝑦)) = (𝑦𝐵 ↦ (𝐹𝑦)))
2723, 26eqtrd 2804 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝐵) = (𝑦𝐵 ↦ (𝐹𝑦)))
2827fveq2d 6336 . . . 4 ((𝜑𝑥𝐴) → (Σ^‘(𝐹𝐵)) = (Σ^‘(𝑦𝐵 ↦ (𝐹𝑦))))
2928mpteq2dva 4876 . . 3 (𝜑 → (𝑥𝐴 ↦ (Σ^‘(𝐹𝐵))) = (𝑥𝐴 ↦ (Σ^‘(𝑦𝐵 ↦ (𝐹𝑦)))))
3029fveq2d 6336 . 2 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝐹𝐵)))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑦𝐵 ↦ (𝐹𝑦))))))
3116, 21, 303eqtr4d 2814 1 (𝜑 → (Σ^𝐹) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝐹𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070   = wceq 1630  wcel 2144  wss 3721   ciun 4652  Disj wdisj 4752  cmpt 4861  cres 5251  wf 6027  cfv 6031  (class class class)co 6792  0cc0 10137  +∞cpnf 10272  [,]cicc 12382  Σ^csumge0 41090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-ac2 9486  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-disj 4753  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-oi 8570  df-card 8964  df-acn 8967  df-ac 9138  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-xadd 12151  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624  df-sumge0 41091
This theorem is referenced by:  psmeasurelem  41198
  Copyright terms: Public domain W3C validator