Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge00 Structured version   Visualization version   GIF version

Theorem sge00 40356
Description: The sum of nonnegative extended reals is zero when applied to the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
sge00 ^‘∅) = 0

Proof of Theorem sge00
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4781 . . . . 5 ∅ ∈ V
21a1i 11 . . . 4 (⊤ → ∅ ∈ V)
3 f0 6073 . . . . . 6 ∅:∅⟶(0[,]+∞)
43a1i 11 . . . . 5 (⊤ → ∅:∅⟶(0[,]+∞))
5 noel 3911 . . . . . . 7 ¬ +∞ ∈ ∅
65a1i 11 . . . . . 6 (⊤ → ¬ +∞ ∈ ∅)
7 rn0 5366 . . . . . . . 8 ran ∅ = ∅
87eqcomi 2629 . . . . . . 7 ∅ = ran ∅
98a1i 11 . . . . . 6 (⊤ → ∅ = ran ∅)
106, 9neleqtrd 2720 . . . . 5 (⊤ → ¬ +∞ ∈ ran ∅)
114, 10fge0iccico 40350 . . . 4 (⊤ → ∅:∅⟶(0[,)+∞))
122, 11sge0reval 40352 . . 3 (⊤ → (Σ^‘∅) = sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < ))
1312trud 1491 . 2 ^‘∅) = sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < )
14 vex 3198 . . . . . . . . . . 11 𝑧 ∈ V
15 eqid 2620 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) = (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
1615elrnmpt 5361 . . . . . . . . . . 11 (𝑧 ∈ V → (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦)))
1714, 16ax-mp 5 . . . . . . . . . 10 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦))
1817biimpi 206 . . . . . . . . 9 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦))
19 nfcv 2762 . . . . . . . . . . 11 𝑥𝑧
20 nfmpt1 4738 . . . . . . . . . . . 12 𝑥(𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
2120nfrn 5357 . . . . . . . . . . 11 𝑥ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
2219, 21nfel 2774 . . . . . . . . . 10 𝑥 𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
23 nfv 1841 . . . . . . . . . 10 𝑥 𝑧 = 0
24 simpr 477 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 = Σ𝑦𝑥 (∅‘𝑦))
25 elinel1 3791 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ 𝒫 ∅)
26 pw0 4334 . . . . . . . . . . . . . . . . . . 19 𝒫 ∅ = {∅}
2726eleq2i 2691 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ 𝒫 ∅ ↔ 𝑥 ∈ {∅})
2827biimpi 206 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ 𝒫 ∅ → 𝑥 ∈ {∅})
2925, 28syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 ∈ {∅})
30 elsni 4185 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {∅} → 𝑥 = ∅)
3129, 30syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → 𝑥 = ∅)
3231sumeq1d 14412 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → Σ𝑦𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦))
3332adantr 481 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → Σ𝑦𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦))
34 sum0 14433 . . . . . . . . . . . . . 14 Σ𝑦 ∈ ∅ (∅‘𝑦) = 0
3534a1i 11 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → Σ𝑦 ∈ ∅ (∅‘𝑦) = 0)
3624, 33, 353eqtrd 2658 . . . . . . . . . . . 12 ((𝑥 ∈ (𝒫 ∅ ∩ Fin) ∧ 𝑧 = Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 = 0)
3736ex 450 . . . . . . . . . . 11 (𝑥 ∈ (𝒫 ∅ ∩ Fin) → (𝑧 = Σ𝑦𝑥 (∅‘𝑦) → 𝑧 = 0))
3837a1i 11 . . . . . . . . . 10 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → (𝑥 ∈ (𝒫 ∅ ∩ Fin) → (𝑧 = Σ𝑦𝑥 (∅‘𝑦) → 𝑧 = 0)))
3922, 23, 38rexlimd 3022 . . . . . . . . 9 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → (∃𝑥 ∈ (𝒫 ∅ ∩ Fin)𝑧 = Σ𝑦𝑥 (∅‘𝑦) → 𝑧 = 0))
4018, 39mpd 15 . . . . . . . 8 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 = 0)
41 velsn 4184 . . . . . . . . . 10 (𝑧 ∈ {0} ↔ 𝑧 = 0)
4241bicomi 214 . . . . . . . . 9 (𝑧 = 0 ↔ 𝑧 ∈ {0})
4342biimpi 206 . . . . . . . 8 (𝑧 = 0 → 𝑧 ∈ {0})
4440, 43syl 17 . . . . . . 7 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) → 𝑧 ∈ {0})
45 elsni 4185 . . . . . . . 8 (𝑧 ∈ {0} → 𝑧 = 0)
46 0elpw 4825 . . . . . . . . . . . . 13 ∅ ∈ 𝒫 ∅
47 0fin 8173 . . . . . . . . . . . . 13 ∅ ∈ Fin
4846, 47pm3.2i 471 . . . . . . . . . . . 12 (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin)
49 elin 3788 . . . . . . . . . . . 12 (∅ ∈ (𝒫 ∅ ∩ Fin) ↔ (∅ ∈ 𝒫 ∅ ∧ ∅ ∈ Fin))
5048, 49mpbir 221 . . . . . . . . . . 11 ∅ ∈ (𝒫 ∅ ∩ Fin)
5134eqcomi 2629 . . . . . . . . . . 11 0 = Σ𝑦 ∈ ∅ (∅‘𝑦)
52 sumeq1 14400 . . . . . . . . . . . . 13 (𝑥 = ∅ → Σ𝑦𝑥 (∅‘𝑦) = Σ𝑦 ∈ ∅ (∅‘𝑦))
5352eqeq2d 2630 . . . . . . . . . . . 12 (𝑥 = ∅ → (0 = Σ𝑦𝑥 (∅‘𝑦) ↔ 0 = Σ𝑦 ∈ ∅ (∅‘𝑦)))
5453rspcev 3304 . . . . . . . . . . 11 ((∅ ∈ (𝒫 ∅ ∩ Fin) ∧ 0 = Σ𝑦 ∈ ∅ (∅‘𝑦)) → ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦))
5550, 51, 54mp2an 707 . . . . . . . . . 10 𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦)
56 0re 10025 . . . . . . . . . . 11 0 ∈ ℝ
5715elrnmpt 5361 . . . . . . . . . . 11 (0 ∈ ℝ → (0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦)))
5856, 57ax-mp 5 . . . . . . . . . 10 (0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ ∃𝑥 ∈ (𝒫 ∅ ∩ Fin)0 = Σ𝑦𝑥 (∅‘𝑦))
5955, 58mpbir 221 . . . . . . . . 9 0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦))
6059a1i 11 . . . . . . . 8 (𝑧 ∈ {0} → 0 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)))
6145, 60eqeltrd 2699 . . . . . . 7 (𝑧 ∈ {0} → 𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)))
6244, 61impbii 199 . . . . . 6 (𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0})
6362ax-gen 1720 . . . . 5 𝑧(𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0})
64 dfcleq 2614 . . . . 5 (ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) = {0} ↔ ∀𝑧(𝑧 ∈ ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) ↔ 𝑧 ∈ {0}))
6563, 64mpbir 221 . . . 4 ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)) = {0}
6665supeq1i 8338 . . 3 sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < ) = sup({0}, ℝ*, < )
67 xrltso 11959 . . . 4 < Or ℝ*
68 0xr 10071 . . . 4 0 ∈ ℝ*
69 supsn 8363 . . . 4 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
7067, 68, 69mp2an 707 . . 3 sup({0}, ℝ*, < ) = 0
7166, 70eqtri 2642 . 2 sup(ran (𝑥 ∈ (𝒫 ∅ ∩ Fin) ↦ Σ𝑦𝑥 (∅‘𝑦)), ℝ*, < ) = 0
7213, 71eqtri 2642 1 ^‘∅) = 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1479   = wceq 1481  wtru 1482  wcel 1988  wrex 2910  Vcvv 3195  cin 3566  c0 3907  𝒫 cpw 4149  {csn 4168  cmpt 4720   Or wor 5024  ran crn 5105  wf 5872  cfv 5876  (class class class)co 6635  Fincfn 7940  supcsup 8331  cr 9920  0cc0 9921  +∞cpnf 10056  *cxr 10058   < clt 10059  [,]cicc 12163  Σcsu 14397  Σ^csumge0 40342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-oi 8400  df-card 8750  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-rp 11818  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-seq 12785  df-exp 12844  df-hash 13101  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-clim 14200  df-sum 14398  df-sumge0 40343
This theorem is referenced by:  sge0cl  40361  sge0isum  40407  ismeannd  40447  psmeasure  40451  isomennd  40508
  Copyright terms: Public domain W3C validator