![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsxms | Structured version Visualization version GIF version |
Description: The constructed metric space is a metric space iff the provided distance function is a metric. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
setsms.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
Ref | Expression |
---|---|
setsxms | ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ (∞Met‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsms.x | . . . . 5 ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) | |
2 | setsms.d | . . . . 5 ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) | |
3 | setsms.k | . . . . 5 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
4 | setsms.m | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
5 | 1, 2, 3, 4 | setsmstopn 22502 | . . . 4 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
6 | 1, 2, 3 | setsmsds 22500 | . . . . . . 7 ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) |
7 | 1, 2, 3 | setsmsbas 22499 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
8 | 7 | sqxpeqd 5281 | . . . . . . 7 ⊢ (𝜑 → (𝑋 × 𝑋) = ((Base‘𝐾) × (Base‘𝐾))) |
9 | 6, 8 | reseq12d 5535 | . . . . . 6 ⊢ (𝜑 → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
10 | 2, 9 | eqtrd 2804 | . . . . 5 ⊢ (𝜑 → 𝐷 = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
11 | 10 | fveq2d 6336 | . . . 4 ⊢ (𝜑 → (MetOpen‘𝐷) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) |
12 | 5, 11 | eqtr3d 2806 | . . 3 ⊢ (𝜑 → (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) |
13 | eqid 2770 | . . . . 5 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
14 | eqid 2770 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
15 | eqid 2770 | . . . . 5 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
16 | 13, 14, 15 | isxms2 22472 | . . . 4 ⊢ (𝐾 ∈ ∞MetSp ↔ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)) ∧ (TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))) |
17 | 16 | rbaib 520 | . . 3 ⊢ ((TopOpen‘𝐾) = (MetOpen‘((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) → (𝐾 ∈ ∞MetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))) |
18 | 12, 17 | syl 17 | . 2 ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))) |
19 | 7 | fveq2d 6336 | . . 3 ⊢ (𝜑 → (∞Met‘𝑋) = (∞Met‘(Base‘𝐾))) |
20 | 10, 19 | eleq12d 2843 | . 2 ⊢ (𝜑 → (𝐷 ∈ (∞Met‘𝑋) ↔ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (∞Met‘(Base‘𝐾)))) |
21 | 18, 20 | bitr4d 271 | 1 ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ (∞Met‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1630 ∈ wcel 2144 〈cop 4320 × cxp 5247 ↾ cres 5251 ‘cfv 6031 (class class class)co 6792 ndxcnx 16060 sSet csts 16061 Basecbs 16063 TopSetcts 16154 distcds 16157 TopOpenctopn 16289 ∞Metcxmt 19945 MetOpencmopn 19950 ∞MetSpcxme 22341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-sup 8503 df-inf 8504 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-q 11991 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-tset 16167 df-ds 16171 df-rest 16290 df-topn 16291 df-topgen 16311 df-psmet 19952 df-xmet 19953 df-bl 19955 df-mopn 19956 df-top 20918 df-topon 20935 df-topsp 20957 df-bases 20970 df-xms 22344 |
This theorem is referenced by: setsms 22504 |
Copyright terms: Public domain | W3C validator |