MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsval Structured version   Visualization version   GIF version

Theorem setsval 15935
Description: Value of the structure replacement function. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
setsval ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))

Proof of Theorem setsval
StepHypRef Expression
1 opex 4962 . . 3 𝐴, 𝐵⟩ ∈ V
2 setsvalg 15934 . . 3 ((𝑆𝑉 ∧ ⟨𝐴, 𝐵⟩ ∈ V) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
31, 2mpan2 707 . 2 (𝑆𝑉 → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}))
4 dmsnopg 5642 . . . . 5 (𝐵𝑊 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
54difeq2d 3761 . . . 4 (𝐵𝑊 → (V ∖ dom {⟨𝐴, 𝐵⟩}) = (V ∖ {𝐴}))
65reseq2d 5428 . . 3 (𝐵𝑊 → (𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) = (𝑆 ↾ (V ∖ {𝐴})))
76uneq1d 3799 . 2 (𝐵𝑊 → ((𝑆 ↾ (V ∖ dom {⟨𝐴, 𝐵⟩})) ∪ {⟨𝐴, 𝐵⟩}) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
83, 7sylan9eq 2705 1 ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  cdif 3604  cun 3605  {csn 4210  cop 4216  dom cdm 5143  cres 5145  (class class class)co 6690   sSet csts 15902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-res 5155  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-sets 15911
This theorem is referenced by:  setsidvald  15936  fvsetsid  15937  fsets  15938  setsabs  15949  setscom  15950  setsid  15961  estrres  16826  setsstrset  33214  setsidel  41671  setsnidel  41672  setsv  41673
  Copyright terms: Public domain W3C validator