![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsmstopn | Structured version Visualization version GIF version |
Description: The topology of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
setsms.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
Ref | Expression |
---|---|
setsmstopn | ⊢ (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsms.x | . . 3 ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) | |
2 | setsms.d | . . 3 ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) | |
3 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
4 | setsms.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
5 | 1, 2, 3, 4 | setsmstset 22329 | . 2 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) |
6 | df-mopn 19790 | . . . . . . . 8 ⊢ MetOpen = (𝑥 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑥))) | |
7 | 6 | dmmptss 5669 | . . . . . . 7 ⊢ dom MetOpen ⊆ ∪ ran ∞Met |
8 | 7 | sseli 3632 | . . . . . 6 ⊢ (𝐷 ∈ dom MetOpen → 𝐷 ∈ ∪ ran ∞Met) |
9 | simpr 476 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → 𝐷 ∈ ∪ ran ∞Met) | |
10 | xmetunirn 22189 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) | |
11 | 9, 10 | sylib 208 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → 𝐷 ∈ (∞Met‘dom dom 𝐷)) |
12 | eqid 2651 | . . . . . . . . . . 11 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
13 | 12 | mopnuni 22293 | . . . . . . . . . 10 ⊢ (𝐷 ∈ (∞Met‘dom dom 𝐷) → dom dom 𝐷 = ∪ (MetOpen‘𝐷)) |
14 | 11, 13 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → dom dom 𝐷 = ∪ (MetOpen‘𝐷)) |
15 | 2 | dmeqd 5358 | . . . . . . . . . . . . . 14 ⊢ (𝜑 → dom 𝐷 = dom ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
16 | dmres 5454 | . . . . . . . . . . . . . 14 ⊢ dom ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)) | |
17 | 15, 16 | syl6eq 2701 | . . . . . . . . . . . . 13 ⊢ (𝜑 → dom 𝐷 = ((𝑋 × 𝑋) ∩ dom (dist‘𝑀))) |
18 | inss1 3866 | . . . . . . . . . . . . 13 ⊢ ((𝑋 × 𝑋) ∩ dom (dist‘𝑀)) ⊆ (𝑋 × 𝑋) | |
19 | 17, 18 | syl6eqss 3688 | . . . . . . . . . . . 12 ⊢ (𝜑 → dom 𝐷 ⊆ (𝑋 × 𝑋)) |
20 | dmss 5355 | . . . . . . . . . . . 12 ⊢ (dom 𝐷 ⊆ (𝑋 × 𝑋) → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋)) | |
21 | 19, 20 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → dom dom 𝐷 ⊆ dom (𝑋 × 𝑋)) |
22 | dmxpid 5377 | . . . . . . . . . . 11 ⊢ dom (𝑋 × 𝑋) = 𝑋 | |
23 | 21, 22 | syl6sseq 3684 | . . . . . . . . . 10 ⊢ (𝜑 → dom dom 𝐷 ⊆ 𝑋) |
24 | 23 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → dom dom 𝐷 ⊆ 𝑋) |
25 | 14, 24 | eqsstr3d 3673 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → ∪ (MetOpen‘𝐷) ⊆ 𝑋) |
26 | sspwuni 4643 | . . . . . . . 8 ⊢ ((MetOpen‘𝐷) ⊆ 𝒫 𝑋 ↔ ∪ (MetOpen‘𝐷) ⊆ 𝑋) | |
27 | 25, 26 | sylibr 224 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐷 ∈ ∪ ran ∞Met) → (MetOpen‘𝐷) ⊆ 𝒫 𝑋) |
28 | 27 | ex 449 | . . . . . 6 ⊢ (𝜑 → (𝐷 ∈ ∪ ran ∞Met → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)) |
29 | 8, 28 | syl5 34 | . . . . 5 ⊢ (𝜑 → (𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋)) |
30 | ndmfv 6256 | . . . . . 6 ⊢ (¬ 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) = ∅) | |
31 | 0ss 4005 | . . . . . 6 ⊢ ∅ ⊆ 𝒫 𝑋 | |
32 | 30, 31 | syl6eqss 3688 | . . . . 5 ⊢ (¬ 𝐷 ∈ dom MetOpen → (MetOpen‘𝐷) ⊆ 𝒫 𝑋) |
33 | 29, 32 | pm2.61d1 171 | . . . 4 ⊢ (𝜑 → (MetOpen‘𝐷) ⊆ 𝒫 𝑋) |
34 | 1, 2, 3 | setsmsbas 22327 | . . . . 5 ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
35 | 34 | pweqd 4196 | . . . 4 ⊢ (𝜑 → 𝒫 𝑋 = 𝒫 (Base‘𝐾)) |
36 | 33, 5, 35 | 3sstr3d 3680 | . . 3 ⊢ (𝜑 → (TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾)) |
37 | eqid 2651 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
38 | eqid 2651 | . . . 4 ⊢ (TopSet‘𝐾) = (TopSet‘𝐾) | |
39 | 37, 38 | topnid 16143 | . . 3 ⊢ ((TopSet‘𝐾) ⊆ 𝒫 (Base‘𝐾) → (TopSet‘𝐾) = (TopOpen‘𝐾)) |
40 | 36, 39 | syl 17 | . 2 ⊢ (𝜑 → (TopSet‘𝐾) = (TopOpen‘𝐾)) |
41 | 5, 40 | eqtrd 2685 | 1 ⊢ (𝜑 → (MetOpen‘𝐷) = (TopOpen‘𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∩ cin 3606 ⊆ wss 3607 ∅c0 3948 𝒫 cpw 4191 〈cop 4216 ∪ cuni 4468 × cxp 5141 dom cdm 5143 ran crn 5144 ↾ cres 5145 ‘cfv 5926 (class class class)co 6690 ndxcnx 15901 sSet csts 15902 Basecbs 15904 TopSetcts 15994 distcds 15997 TopOpenctopn 16129 topGenctg 16145 ∞Metcxmt 19779 ballcbl 19781 MetOpencmopn 19784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-tset 16007 df-rest 16130 df-topn 16131 df-topgen 16151 df-psmet 19786 df-xmet 19787 df-bl 19789 df-mopn 19790 df-top 20747 df-topon 20764 df-bases 20798 |
This theorem is referenced by: setsxms 22331 tmslem 22334 |
Copyright terms: Public domain | W3C validator |