![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setsidvald | Structured version Visualization version GIF version |
Description: Value of the structure replacement function, deduction version. (Contributed by AV, 14-Mar-2020.) |
Ref | Expression |
---|---|
setsidvald.e | ⊢ 𝐸 = Slot 𝑁 |
setsidvald.n | ⊢ 𝑁 ∈ ℕ |
setsidvald.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
setsidvald.f | ⊢ (𝜑 → Fun 𝑆) |
setsidvald.d | ⊢ (𝜑 → (𝐸‘ndx) ∈ dom 𝑆) |
Ref | Expression |
---|---|
setsidvald | ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsidvald.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
2 | fvex 6358 | . . 3 ⊢ (𝐸‘𝑆) ∈ V | |
3 | setsval 16086 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ (𝐸‘𝑆) ∈ V) → (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉})) | |
4 | 1, 2, 3 | sylancl 697 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉})) |
5 | setsidvald.e | . . . . . . 7 ⊢ 𝐸 = Slot 𝑁 | |
6 | setsidvald.n | . . . . . . 7 ⊢ 𝑁 ∈ ℕ | |
7 | 5, 6 | ndxid 16081 | . . . . . 6 ⊢ 𝐸 = Slot (𝐸‘ndx) |
8 | 7, 1 | strfvnd 16074 | . . . . 5 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘(𝐸‘ndx))) |
9 | 8 | opeq2d 4556 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), (𝐸‘𝑆)〉 = 〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉) |
10 | 9 | sneqd 4329 | . . 3 ⊢ (𝜑 → {〈(𝐸‘ndx), (𝐸‘𝑆)〉} = {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) |
11 | 10 | uneq2d 3906 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝐸‘𝑆)〉}) = ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉})) |
12 | setsidvald.f | . . 3 ⊢ (𝜑 → Fun 𝑆) | |
13 | setsidvald.d | . . 3 ⊢ (𝜑 → (𝐸‘ndx) ∈ dom 𝑆) | |
14 | funresdfunsn 6615 | . . 3 ⊢ ((Fun 𝑆 ∧ (𝐸‘ndx) ∈ dom 𝑆) → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) = 𝑆) | |
15 | 12, 13, 14 | syl2anc 696 | . 2 ⊢ (𝜑 → ((𝑆 ↾ (V ∖ {(𝐸‘ndx)})) ∪ {〈(𝐸‘ndx), (𝑆‘(𝐸‘ndx))〉}) = 𝑆) |
16 | 4, 11, 15 | 3eqtrrd 2795 | 1 ⊢ (𝜑 → 𝑆 = (𝑆 sSet 〈(𝐸‘ndx), (𝐸‘𝑆)〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1628 ∈ wcel 2135 Vcvv 3336 ∖ cdif 3708 ∪ cun 3709 {csn 4317 〈cop 4323 dom cdm 5262 ↾ cres 5264 Fun wfun 6039 ‘cfv 6045 (class class class)co 6809 ℕcn 11208 ndxcnx 16052 sSet csts 16053 Slot cslot 16054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-i2m1 10192 ax-1ne0 10193 ax-rrecex 10196 ax-cnre 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-reu 3053 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-nn 11209 df-ndx 16058 df-slot 16059 df-sets 16062 |
This theorem is referenced by: ressval3d 16135 |
Copyright terms: Public domain | W3C validator |