MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setscom Structured version   Visualization version   GIF version

Theorem setscom 15950
Description: Component-setting is commutative when the x-values are different. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
setscom.1 𝐴 ∈ V
setscom.2 𝐵 ∈ V
Assertion
Ref Expression
setscom (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))

Proof of Theorem setscom
StepHypRef Expression
1 rescom 5458 . . . . . 6 ((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) = ((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴}))
21uneq1i 3796 . . . . 5 (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {⟨𝐴, 𝐶⟩}) = (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩})
32uneq1i 3796 . . . 4 ((((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {⟨𝐴, 𝐶⟩}) ∪ {⟨𝐵, 𝐷⟩}) = ((((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) ∪ {⟨𝐵, 𝐷⟩})
4 un23 3805 . . . 4 ((((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) ∪ {⟨𝐵, 𝐷⟩}) = ((((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐵, 𝐷⟩}) ∪ {⟨𝐴, 𝐶⟩})
53, 4eqtri 2673 . . 3 ((((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {⟨𝐴, 𝐶⟩}) ∪ {⟨𝐵, 𝐷⟩}) = ((((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐵, 𝐷⟩}) ∪ {⟨𝐴, 𝐶⟩})
6 setsval 15935 . . . . . . 7 ((𝑆𝑉𝐶𝑊) → (𝑆 sSet ⟨𝐴, 𝐶⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
76ad2ant2r 798 . . . . . 6 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → (𝑆 sSet ⟨𝐴, 𝐶⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
87reseq1d 5427 . . . . 5 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐴, 𝐶⟩) ↾ (V ∖ {𝐵})) = (((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) ↾ (V ∖ {𝐵})))
9 resundir 5446 . . . . . 6 (((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) ↾ (V ∖ {𝐵})) = (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ ({⟨𝐴, 𝐶⟩} ↾ (V ∖ {𝐵})))
10 setscom.1 . . . . . . . . . 10 𝐴 ∈ V
11 elex 3243 . . . . . . . . . . 11 (𝐶𝑊𝐶 ∈ V)
1211ad2antrl 764 . . . . . . . . . 10 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → 𝐶 ∈ V)
13 opelxpi 5182 . . . . . . . . . 10 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → ⟨𝐴, 𝐶⟩ ∈ (V × V))
1410, 12, 13sylancr 696 . . . . . . . . 9 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ⟨𝐴, 𝐶⟩ ∈ (V × V))
15 opex 4962 . . . . . . . . . 10 𝐴, 𝐶⟩ ∈ V
1615relsn 5259 . . . . . . . . 9 (Rel {⟨𝐴, 𝐶⟩} ↔ ⟨𝐴, 𝐶⟩ ∈ (V × V))
1714, 16sylibr 224 . . . . . . . 8 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → Rel {⟨𝐴, 𝐶⟩})
18 dmsnopss 5643 . . . . . . . . 9 dom {⟨𝐴, 𝐶⟩} ⊆ {𝐴}
19 disjsn2 4279 . . . . . . . . . . 11 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
2019ad2antlr 763 . . . . . . . . . 10 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ({𝐴} ∩ {𝐵}) = ∅)
21 disj2 4057 . . . . . . . . . 10 (({𝐴} ∩ {𝐵}) = ∅ ↔ {𝐴} ⊆ (V ∖ {𝐵}))
2220, 21sylib 208 . . . . . . . . 9 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → {𝐴} ⊆ (V ∖ {𝐵}))
2318, 22syl5ss 3647 . . . . . . . 8 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → dom {⟨𝐴, 𝐶⟩} ⊆ (V ∖ {𝐵}))
24 relssres 5472 . . . . . . . 8 ((Rel {⟨𝐴, 𝐶⟩} ∧ dom {⟨𝐴, 𝐶⟩} ⊆ (V ∖ {𝐵})) → ({⟨𝐴, 𝐶⟩} ↾ (V ∖ {𝐵})) = {⟨𝐴, 𝐶⟩})
2517, 23, 24syl2anc 694 . . . . . . 7 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ({⟨𝐴, 𝐶⟩} ↾ (V ∖ {𝐵})) = {⟨𝐴, 𝐶⟩})
2625uneq2d 3800 . . . . . 6 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ ({⟨𝐴, 𝐶⟩} ↾ (V ∖ {𝐵}))) = (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {⟨𝐴, 𝐶⟩}))
279, 26syl5eq 2697 . . . . 5 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → (((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) ↾ (V ∖ {𝐵})) = (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {⟨𝐴, 𝐶⟩}))
288, 27eqtrd 2685 . . . 4 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐴, 𝐶⟩) ↾ (V ∖ {𝐵})) = (((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {⟨𝐴, 𝐶⟩}))
2928uneq1d 3799 . . 3 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → (((𝑆 sSet ⟨𝐴, 𝐶⟩) ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}) = ((((𝑆 ↾ (V ∖ {𝐴})) ↾ (V ∖ {𝐵})) ∪ {⟨𝐴, 𝐶⟩}) ∪ {⟨𝐵, 𝐷⟩}))
30 setsval 15935 . . . . . . 7 ((𝑆𝑉𝐷𝑋) → (𝑆 sSet ⟨𝐵, 𝐷⟩) = ((𝑆 ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}))
3130reseq1d 5427 . . . . . 6 ((𝑆𝑉𝐷𝑋) → ((𝑆 sSet ⟨𝐵, 𝐷⟩) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}) ↾ (V ∖ {𝐴})))
3231ad2ant2rl 800 . . . . 5 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐵, 𝐷⟩) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}) ↾ (V ∖ {𝐴})))
33 resundir 5446 . . . . . 6 (((𝑆 ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐵, 𝐷⟩} ↾ (V ∖ {𝐴})))
34 setscom.2 . . . . . . . . . 10 𝐵 ∈ V
35 elex 3243 . . . . . . . . . . 11 (𝐷𝑋𝐷 ∈ V)
3635ad2antll 765 . . . . . . . . . 10 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → 𝐷 ∈ V)
37 opelxpi 5182 . . . . . . . . . 10 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → ⟨𝐵, 𝐷⟩ ∈ (V × V))
3834, 36, 37sylancr 696 . . . . . . . . 9 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ⟨𝐵, 𝐷⟩ ∈ (V × V))
39 opex 4962 . . . . . . . . . 10 𝐵, 𝐷⟩ ∈ V
4039relsn 5259 . . . . . . . . 9 (Rel {⟨𝐵, 𝐷⟩} ↔ ⟨𝐵, 𝐷⟩ ∈ (V × V))
4138, 40sylibr 224 . . . . . . . 8 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → Rel {⟨𝐵, 𝐷⟩})
42 dmsnopss 5643 . . . . . . . . 9 dom {⟨𝐵, 𝐷⟩} ⊆ {𝐵}
43 ssv 3658 . . . . . . . . . . 11 {𝐴} ⊆ V
44 ssv 3658 . . . . . . . . . . 11 {𝐵} ⊆ V
45 ssconb 3776 . . . . . . . . . . 11 (({𝐴} ⊆ V ∧ {𝐵} ⊆ V) → ({𝐴} ⊆ (V ∖ {𝐵}) ↔ {𝐵} ⊆ (V ∖ {𝐴})))
4643, 44, 45mp2an 708 . . . . . . . . . 10 ({𝐴} ⊆ (V ∖ {𝐵}) ↔ {𝐵} ⊆ (V ∖ {𝐴}))
4722, 46sylib 208 . . . . . . . . 9 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → {𝐵} ⊆ (V ∖ {𝐴}))
4842, 47syl5ss 3647 . . . . . . . 8 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → dom {⟨𝐵, 𝐷⟩} ⊆ (V ∖ {𝐴}))
49 relssres 5472 . . . . . . . 8 ((Rel {⟨𝐵, 𝐷⟩} ∧ dom {⟨𝐵, 𝐷⟩} ⊆ (V ∖ {𝐴})) → ({⟨𝐵, 𝐷⟩} ↾ (V ∖ {𝐴})) = {⟨𝐵, 𝐷⟩})
5041, 48, 49syl2anc 694 . . . . . . 7 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ({⟨𝐵, 𝐷⟩} ↾ (V ∖ {𝐴})) = {⟨𝐵, 𝐷⟩})
5150uneq2d 3800 . . . . . 6 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ ({⟨𝐵, 𝐷⟩} ↾ (V ∖ {𝐴}))) = (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐵, 𝐷⟩}))
5233, 51syl5eq 2697 . . . . 5 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → (((𝑆 ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐵, 𝐷⟩}))
5332, 52eqtrd 2685 . . . 4 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐵, 𝐷⟩) ↾ (V ∖ {𝐴})) = (((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐵, 𝐷⟩}))
5453uneq1d 3799 . . 3 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → (((𝑆 sSet ⟨𝐵, 𝐷⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}) = ((((𝑆 ↾ (V ∖ {𝐵})) ↾ (V ∖ {𝐴})) ∪ {⟨𝐵, 𝐷⟩}) ∪ {⟨𝐴, 𝐶⟩}))
555, 29, 543eqtr4a 2711 . 2 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → (((𝑆 sSet ⟨𝐴, 𝐶⟩) ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}) = (((𝑆 sSet ⟨𝐵, 𝐷⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
56 ovex 6718 . . 3 (𝑆 sSet ⟨𝐴, 𝐶⟩) ∈ V
57 simprr 811 . . 3 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → 𝐷𝑋)
58 setsval 15935 . . 3 (((𝑆 sSet ⟨𝐴, 𝐶⟩) ∈ V ∧ 𝐷𝑋) → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = (((𝑆 sSet ⟨𝐴, 𝐶⟩) ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}))
5956, 57, 58sylancr 696 . 2 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = (((𝑆 sSet ⟨𝐴, 𝐶⟩) ↾ (V ∖ {𝐵})) ∪ {⟨𝐵, 𝐷⟩}))
60 ovex 6718 . . 3 (𝑆 sSet ⟨𝐵, 𝐷⟩) ∈ V
61 simprl 809 . . 3 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → 𝐶𝑊)
62 setsval 15935 . . 3 (((𝑆 sSet ⟨𝐵, 𝐷⟩) ∈ V ∧ 𝐶𝑊) → ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩) = (((𝑆 sSet ⟨𝐵, 𝐷⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
6360, 61, 62sylancr 696 . 2 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩) = (((𝑆 sSet ⟨𝐵, 𝐷⟩) ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐶⟩}))
6455, 59, 633eqtr4d 2695 1 (((𝑆𝑉𝐴𝐵) ∧ (𝐶𝑊𝐷𝑋)) → ((𝑆 sSet ⟨𝐴, 𝐶⟩) sSet ⟨𝐵, 𝐷⟩) = ((𝑆 sSet ⟨𝐵, 𝐷⟩) sSet ⟨𝐴, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231  cdif 3604  cun 3605  cin 3606  wss 3607  c0 3948  {csn 4210  cop 4216   × cxp 5141  dom cdm 5143  cres 5145  Rel wrel 5148  (class class class)co 6690   sSet csts 15902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-res 5155  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-sets 15911
This theorem is referenced by:  rescabs  16540  mgpress  18546
  Copyright terms: Public domain W3C validator