Mathbox for Emmett Weisz < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrecsres Structured version   Visualization version   GIF version

Theorem setrecsres 42966
 Description: A recursively generated class is unaffected when its input function is restricted to subsets of the class. (Contributed by Emmett Weisz, 14-Mar-2022.)
Hypotheses
Ref Expression
setrecsres.1 𝐵 = setrecs(𝐹)
setrecsres.2 (𝜑 → Fun 𝐹)
Assertion
Ref Expression
setrecsres (𝜑𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵)))

Proof of Theorem setrecsres
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 setrecsres.1 . . 3 𝐵 = setrecs(𝐹)
2 id 22 . . . . . . . 8 (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
3 setrecsres.2 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
4 resss 5563 . . . . . . . . . . 11 (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹
54a1i 11 . . . . . . . . . 10 (𝜑 → (𝐹 ↾ 𝒫 𝐵) ⊆ 𝐹)
63, 5setrecsss 42965 . . . . . . . . 9 (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ setrecs(𝐹))
76, 1syl6sseqr 3799 . . . . . . . 8 (𝜑 → setrecs((𝐹 ↾ 𝒫 𝐵)) ⊆ 𝐵)
82, 7sylan9ssr 3764 . . . . . . 7 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → 𝑥𝐵)
9 selpw 4302 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐵𝑥𝐵)
10 fvres 6348 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹𝑥))
119, 10sylbir 225 . . . . . . 7 (𝑥𝐵 → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹𝑥))
128, 11syl 17 . . . . . 6 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) = (𝐹𝑥))
13 eqid 2770 . . . . . . . 8 setrecs((𝐹 ↾ 𝒫 𝐵)) = setrecs((𝐹 ↾ 𝒫 𝐵))
14 vex 3352 . . . . . . . . 9 𝑥 ∈ V
1514a1i 11 . . . . . . . 8 (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → 𝑥 ∈ V)
1613, 15, 2setrec1 42956 . . . . . . 7 (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
1716adantl 467 . . . . . 6 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → ((𝐹 ↾ 𝒫 𝐵)‘𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
1812, 17eqsstr3d 3787 . . . . 5 ((𝜑𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))) → (𝐹𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
1918ex 397 . . . 4 (𝜑 → (𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))))
2019alrimiv 2006 . . 3 (𝜑 → ∀𝑥(𝑥 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)) → (𝐹𝑥) ⊆ setrecs((𝐹 ↾ 𝒫 𝐵))))
211, 20setrec2v 42961 . 2 (𝜑𝐵 ⊆ setrecs((𝐹 ↾ 𝒫 𝐵)))
2221, 7eqssd 3767 1 (𝜑𝐵 = setrecs((𝐹 ↾ 𝒫 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630   ∈ wcel 2144  Vcvv 3349   ⊆ wss 3721  𝒫 cpw 4295   ↾ cres 5251  Fun wfun 6025  ‘cfv 6031  setrecscsetrecs 42948 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-reg 8652  ax-inf2 8701 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-r1 8790  df-rank 8791  df-setrecs 42949 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator