Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setindtrs Structured version   Visualization version   GIF version

Theorem setindtrs 38133
Description: Epsilon induction scheme without Infinity. See comments at setindtr 38132. (Contributed by Stefan O'Rear, 28-Oct-2014.)
Hypotheses
Ref Expression
setindtrs.a (∀𝑦𝑥 𝜓𝜑)
setindtrs.b (𝑥 = 𝑦 → (𝜑𝜓))
setindtrs.c (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
setindtrs (∃𝑧(Tr 𝑧𝐵𝑧) → 𝜒)
Distinct variable groups:   𝑥,𝐵,𝑧   𝜑,𝑦   𝜓,𝑥   𝜒,𝑥   𝜑,𝑧   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝜒(𝑦,𝑧)   𝐵(𝑦)

Proof of Theorem setindtrs
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 setindtr 38132 . . 3 (∀𝑎(𝑎 ⊆ {𝑥𝜑} → 𝑎 ∈ {𝑥𝜑}) → (∃𝑧(Tr 𝑧𝐵𝑧) → 𝐵 ∈ {𝑥𝜑}))
2 dfss3 3747 . . . 4 (𝑎 ⊆ {𝑥𝜑} ↔ ∀𝑦𝑎 𝑦 ∈ {𝑥𝜑})
3 nfcv 2916 . . . . . . 7 𝑥𝑎
4 nfsab1 2764 . . . . . . 7 𝑥 𝑦 ∈ {𝑥𝜑}
53, 4nfral 3097 . . . . . 6 𝑥𝑦𝑎 𝑦 ∈ {𝑥𝜑}
6 nfsab1 2764 . . . . . 6 𝑥 𝑎 ∈ {𝑥𝜑}
75, 6nfim 1980 . . . . 5 𝑥(∀𝑦𝑎 𝑦 ∈ {𝑥𝜑} → 𝑎 ∈ {𝑥𝜑})
8 raleq 3291 . . . . . 6 (𝑥 = 𝑎 → (∀𝑦𝑥 𝑦 ∈ {𝑥𝜑} ↔ ∀𝑦𝑎 𝑦 ∈ {𝑥𝜑}))
9 eleq1w 2836 . . . . . 6 (𝑥 = 𝑎 → (𝑥 ∈ {𝑥𝜑} ↔ 𝑎 ∈ {𝑥𝜑}))
108, 9imbi12d 334 . . . . 5 (𝑥 = 𝑎 → ((∀𝑦𝑥 𝑦 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜑}) ↔ (∀𝑦𝑎 𝑦 ∈ {𝑥𝜑} → 𝑎 ∈ {𝑥𝜑})))
11 setindtrs.a . . . . . 6 (∀𝑦𝑥 𝜓𝜑)
12 vex 3358 . . . . . . . 8 𝑦 ∈ V
13 setindtrs.b . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜓))
1412, 13elab 3507 . . . . . . 7 (𝑦 ∈ {𝑥𝜑} ↔ 𝜓)
1514ralbii 3132 . . . . . 6 (∀𝑦𝑥 𝑦 ∈ {𝑥𝜑} ↔ ∀𝑦𝑥 𝜓)
16 abid 2762 . . . . . 6 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
1711, 15, 163imtr4i 282 . . . . 5 (∀𝑦𝑥 𝑦 ∈ {𝑥𝜑} → 𝑥 ∈ {𝑥𝜑})
187, 10, 17chvar 2427 . . . 4 (∀𝑦𝑎 𝑦 ∈ {𝑥𝜑} → 𝑎 ∈ {𝑥𝜑})
192, 18sylbi 208 . . 3 (𝑎 ⊆ {𝑥𝜑} → 𝑎 ∈ {𝑥𝜑})
201, 19mpg 1875 . 2 (∃𝑧(Tr 𝑧𝐵𝑧) → 𝐵 ∈ {𝑥𝜑})
21 elex 3369 . . . . 5 (𝐵𝑧𝐵 ∈ V)
2221adantl 468 . . . 4 ((Tr 𝑧𝐵𝑧) → 𝐵 ∈ V)
2322exlimiv 2013 . . 3 (∃𝑧(Tr 𝑧𝐵𝑧) → 𝐵 ∈ V)
24 setindtrs.c . . . 4 (𝑥 = 𝐵 → (𝜑𝜒))
2524elabg 3508 . . 3 (𝐵 ∈ V → (𝐵 ∈ {𝑥𝜑} ↔ 𝜒))
2623, 25syl 17 . 2 (∃𝑧(Tr 𝑧𝐵𝑧) → (𝐵 ∈ {𝑥𝜑} ↔ 𝜒))
2720, 26mpbid 223 1 (∃𝑧(Tr 𝑧𝐵𝑧) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 383   = wceq 1634  wex 1855  wcel 2148  {cab 2760  wral 3064  Vcvv 3355  wss 3729  Tr wtr 4899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-sep 4928  ax-reg 8674
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-ral 3069  df-rex 3070  df-v 3357  df-dif 3732  df-in 3736  df-ss 3743  df-nul 4074  df-uni 4586  df-tr 4900
This theorem is referenced by:  dford3lem2  38135
  Copyright terms: Public domain W3C validator