![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setinds | Structured version Visualization version GIF version |
Description: Principle of E induction (set induction). If a property passes from all elements of 𝑥 to 𝑥 itself, then it holds for all 𝑥. (Contributed by Scott Fenton, 10-Mar-2011.) |
Ref | Expression |
---|---|
setinds.1 | ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) |
Ref | Expression |
---|---|
setinds | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3343 | . 2 ⊢ 𝑥 ∈ V | |
2 | setind 8783 | . . . . 5 ⊢ (∀𝑧(𝑧 ⊆ {𝑥 ∣ 𝜑} → 𝑧 ∈ {𝑥 ∣ 𝜑}) → {𝑥 ∣ 𝜑} = V) | |
3 | dfss3 3733 | . . . . . . 7 ⊢ (𝑧 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑦 ∈ 𝑧 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
4 | df-sbc 3577 | . . . . . . . . 9 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑}) | |
5 | 4 | ralbii 3118 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑧 𝑦 ∈ {𝑥 ∣ 𝜑}) |
6 | nfcv 2902 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝑧 | |
7 | nfsbc1v 3596 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
8 | 6, 7 | nfral 3083 | . . . . . . . . . 10 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 |
9 | nfsbc1v 3596 | . . . . . . . . . 10 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
10 | 8, 9 | nfim 1974 | . . . . . . . . 9 ⊢ Ⅎ𝑥(∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) |
11 | raleq 3277 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑)) | |
12 | sbceq1a 3587 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
13 | 11, 12 | imbi12d 333 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → ((∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) ↔ (∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑))) |
14 | setinds.1 | . . . . . . . . 9 ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝜑 → 𝜑) | |
15 | 10, 13, 14 | chvar 2407 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝑧 [𝑦 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜑) |
16 | 5, 15 | sylbir 225 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝑧 𝑦 ∈ {𝑥 ∣ 𝜑} → [𝑧 / 𝑥]𝜑) |
17 | 3, 16 | sylbi 207 | . . . . . 6 ⊢ (𝑧 ⊆ {𝑥 ∣ 𝜑} → [𝑧 / 𝑥]𝜑) |
18 | df-sbc 3577 | . . . . . 6 ⊢ ([𝑧 / 𝑥]𝜑 ↔ 𝑧 ∈ {𝑥 ∣ 𝜑}) | |
19 | 17, 18 | sylib 208 | . . . . 5 ⊢ (𝑧 ⊆ {𝑥 ∣ 𝜑} → 𝑧 ∈ {𝑥 ∣ 𝜑}) |
20 | 2, 19 | mpg 1873 | . . . 4 ⊢ {𝑥 ∣ 𝜑} = V |
21 | 20 | eqcomi 2769 | . . 3 ⊢ V = {𝑥 ∣ 𝜑} |
22 | 21 | abeq2i 2873 | . 2 ⊢ (𝑥 ∈ V ↔ 𝜑) |
23 | 1, 22 | mpbi 220 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 {cab 2746 ∀wral 3050 Vcvv 3340 [wsbc 3576 ⊆ wss 3715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-reg 8662 ax-inf2 8711 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 |
This theorem is referenced by: setinds2f 31989 |
Copyright terms: Public domain | W3C validator |