MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setciso Structured version   Visualization version   GIF version

Theorem setciso 16938
Description: An isomorphism in the category of sets is a bijection. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setciso.n 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
setciso (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹:𝑋1-1-onto𝑌))

Proof of Theorem setciso
StepHypRef Expression
1 eqid 2756 . . . 4 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2756 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
3 setcmon.u . . . . 5 (𝜑𝑈𝑉)
4 setcmon.c . . . . . 6 𝐶 = (SetCat‘𝑈)
54setccat 16932 . . . . 5 (𝑈𝑉𝐶 ∈ Cat)
63, 5syl 17 . . . 4 (𝜑𝐶 ∈ Cat)
7 setcmon.x . . . . 5 (𝜑𝑋𝑈)
84, 3setcbas 16925 . . . . 5 (𝜑𝑈 = (Base‘𝐶))
97, 8eleqtrd 2837 . . . 4 (𝜑𝑋 ∈ (Base‘𝐶))
10 setcmon.y . . . . 5 (𝜑𝑌𝑈)
1110, 8eleqtrd 2837 . . . 4 (𝜑𝑌 ∈ (Base‘𝐶))
12 setciso.n . . . 4 𝐼 = (Iso‘𝐶)
131, 2, 6, 9, 11, 12isoval 16622 . . 3 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌))
1413eleq2d 2821 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
151, 2, 6, 9, 11invfun 16621 . . . . 5 (𝜑 → Fun (𝑋(Inv‘𝐶)𝑌))
16 funfvbrb 6489 . . . . 5 (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
1715, 16syl 17 . . . 4 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹)))
184, 3, 7, 10, 2setcinv 16937 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹:𝑋1-1-onto𝑌 ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = 𝐹)))
19 simpl 474 . . . . 5 ((𝐹:𝑋1-1-onto𝑌 ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = 𝐹) → 𝐹:𝑋1-1-onto𝑌)
2018, 19syl6bi 243 . . . 4 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) → 𝐹:𝑋1-1-onto𝑌))
2117, 20sylbid 230 . . 3 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) → 𝐹:𝑋1-1-onto𝑌))
22 eqid 2756 . . . 4 𝐹 = 𝐹
234, 3, 7, 10, 2setcinv 16937 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹 ↔ (𝐹:𝑋1-1-onto𝑌𝐹 = 𝐹)))
24 funrel 6062 . . . . . . 7 (Fun (𝑋(Inv‘𝐶)𝑌) → Rel (𝑋(Inv‘𝐶)𝑌))
2515, 24syl 17 . . . . . 6 (𝜑 → Rel (𝑋(Inv‘𝐶)𝑌))
26 releldm 5509 . . . . . . 7 ((Rel (𝑋(Inv‘𝐶)𝑌) ∧ 𝐹(𝑋(Inv‘𝐶)𝑌)𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))
2726ex 449 . . . . . 6 (Rel (𝑋(Inv‘𝐶)𝑌) → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2825, 27syl 17 . . . . 5 (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)𝐹𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
2923, 28sylbird 250 . . . 4 (𝜑 → ((𝐹:𝑋1-1-onto𝑌𝐹 = 𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
3022, 29mpan2i 715 . . 3 (𝜑 → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)))
3121, 30impbid 202 . 2 (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹:𝑋1-1-onto𝑌))
3214, 31bitrd 268 1 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹:𝑋1-1-onto𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1628  wcel 2135   class class class wbr 4800  ccnv 5261  dom cdm 5262  Rel wrel 5267  Fun wfun 6039  1-1-ontowf1o 6044  cfv 6045  (class class class)co 6809  Basecbs 16055  Catccat 16522  Invcinv 16602  Isociso 16603  SetCatcsetc 16922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-map 8021  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-nn 11209  df-2 11267  df-3 11268  df-4 11269  df-5 11270  df-6 11271  df-7 11272  df-8 11273  df-9 11274  df-n0 11481  df-z 11566  df-dec 11682  df-uz 11876  df-fz 12516  df-struct 16057  df-ndx 16058  df-slot 16059  df-base 16061  df-hom 16164  df-cco 16165  df-cat 16526  df-cid 16527  df-sect 16604  df-inv 16605  df-iso 16606  df-setc 16923
This theorem is referenced by:  yonffthlem  17119
  Copyright terms: Public domain W3C validator