![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setciso | Structured version Visualization version GIF version |
Description: An isomorphism in the category of sets is a bijection. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
setcmon.c | ⊢ 𝐶 = (SetCat‘𝑈) |
setcmon.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
setcmon.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
setcmon.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
setciso.n | ⊢ 𝐼 = (Iso‘𝐶) |
Ref | Expression |
---|---|
setciso | ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹:𝑋–1-1-onto→𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2756 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
2 | eqid 2756 | . . . 4 ⊢ (Inv‘𝐶) = (Inv‘𝐶) | |
3 | setcmon.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
4 | setcmon.c | . . . . . 6 ⊢ 𝐶 = (SetCat‘𝑈) | |
5 | 4 | setccat 16932 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) |
6 | 3, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | setcmon.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
8 | 4, 3 | setcbas 16925 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
9 | 7, 8 | eleqtrd 2837 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
10 | setcmon.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
11 | 10, 8 | eleqtrd 2837 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
12 | setciso.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
13 | 1, 2, 6, 9, 11, 12 | isoval 16622 | . . 3 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋(Inv‘𝐶)𝑌)) |
14 | 13 | eleq2d 2821 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
15 | 1, 2, 6, 9, 11 | invfun 16621 | . . . . 5 ⊢ (𝜑 → Fun (𝑋(Inv‘𝐶)𝑌)) |
16 | funfvbrb 6489 | . . . . 5 ⊢ (Fun (𝑋(Inv‘𝐶)𝑌) → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹))) |
18 | 4, 3, 7, 10, 2 | setcinv 16937 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = ◡𝐹))) |
19 | simpl 474 | . . . . 5 ⊢ ((𝐹:𝑋–1-1-onto→𝑌 ∧ ((𝑋(Inv‘𝐶)𝑌)‘𝐹) = ◡𝐹) → 𝐹:𝑋–1-1-onto→𝑌) | |
20 | 18, 19 | syl6bi 243 | . . . 4 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)((𝑋(Inv‘𝐶)𝑌)‘𝐹) → 𝐹:𝑋–1-1-onto→𝑌)) |
21 | 17, 20 | sylbid 230 | . . 3 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) → 𝐹:𝑋–1-1-onto→𝑌)) |
22 | eqid 2756 | . . . 4 ⊢ ◡𝐹 = ◡𝐹 | |
23 | 4, 3, 7, 10, 2 | setcinv 16937 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 ↔ (𝐹:𝑋–1-1-onto→𝑌 ∧ ◡𝐹 = ◡𝐹))) |
24 | funrel 6062 | . . . . . . 7 ⊢ (Fun (𝑋(Inv‘𝐶)𝑌) → Rel (𝑋(Inv‘𝐶)𝑌)) | |
25 | 15, 24 | syl 17 | . . . . . 6 ⊢ (𝜑 → Rel (𝑋(Inv‘𝐶)𝑌)) |
26 | releldm 5509 | . . . . . . 7 ⊢ ((Rel (𝑋(Inv‘𝐶)𝑌) ∧ 𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌)) | |
27 | 26 | ex 449 | . . . . . 6 ⊢ (Rel (𝑋(Inv‘𝐶)𝑌) → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
28 | 25, 27 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹(𝑋(Inv‘𝐶)𝑌)◡𝐹 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
29 | 23, 28 | sylbird 250 | . . . 4 ⊢ (𝜑 → ((𝐹:𝑋–1-1-onto→𝑌 ∧ ◡𝐹 = ◡𝐹) → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
30 | 22, 29 | mpan2i 715 | . . 3 ⊢ (𝜑 → (𝐹:𝑋–1-1-onto→𝑌 → 𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌))) |
31 | 21, 30 | impbid 202 | . 2 ⊢ (𝜑 → (𝐹 ∈ dom (𝑋(Inv‘𝐶)𝑌) ↔ 𝐹:𝑋–1-1-onto→𝑌)) |
32 | 14, 31 | bitrd 268 | 1 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ 𝐹:𝑋–1-1-onto→𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1628 ∈ wcel 2135 class class class wbr 4800 ◡ccnv 5261 dom cdm 5262 Rel wrel 5267 Fun wfun 6039 –1-1-onto→wf1o 6044 ‘cfv 6045 (class class class)co 6809 Basecbs 16055 Catccat 16522 Invcinv 16602 Isociso 16603 SetCatcsetc 16922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rmo 3054 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-1st 7329 df-2nd 7330 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-1o 7725 df-oadd 7729 df-er 7907 df-map 8021 df-en 8118 df-dom 8119 df-sdom 8120 df-fin 8121 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-nn 11209 df-2 11267 df-3 11268 df-4 11269 df-5 11270 df-6 11271 df-7 11272 df-8 11273 df-9 11274 df-n0 11481 df-z 11566 df-dec 11682 df-uz 11876 df-fz 12516 df-struct 16057 df-ndx 16058 df-slot 16059 df-base 16061 df-hom 16164 df-cco 16165 df-cat 16526 df-cid 16527 df-sect 16604 df-inv 16605 df-iso 16606 df-setc 16923 |
This theorem is referenced by: yonffthlem 17119 |
Copyright terms: Public domain | W3C validator |