MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcepi Structured version   Visualization version   GIF version

Theorem setcepi 16785
Description: An epimorphism of sets is a surjection. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcmon.c 𝐶 = (SetCat‘𝑈)
setcmon.u (𝜑𝑈𝑉)
setcmon.x (𝜑𝑋𝑈)
setcmon.y (𝜑𝑌𝑈)
setcepi.h 𝐸 = (Epi‘𝐶)
setcepi.2 (𝜑 → 2𝑜𝑈)
Assertion
Ref Expression
setcepi (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ 𝐹:𝑋onto𝑌))

Proof of Theorem setcepi
Dummy variables 𝑥 𝑔 𝑎 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2651 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2651 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
4 setcepi.h . . . . . 6 𝐸 = (Epi‘𝐶)
5 setcmon.u . . . . . . 7 (𝜑𝑈𝑉)
6 setcmon.c . . . . . . . 8 𝐶 = (SetCat‘𝑈)
76setccat 16782 . . . . . . 7 (𝑈𝑉𝐶 ∈ Cat)
85, 7syl 17 . . . . . 6 (𝜑𝐶 ∈ Cat)
9 setcmon.x . . . . . . 7 (𝜑𝑋𝑈)
106, 5setcbas 16775 . . . . . . 7 (𝜑𝑈 = (Base‘𝐶))
119, 10eleqtrd 2732 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝐶))
12 setcmon.y . . . . . . 7 (𝜑𝑌𝑈)
1312, 10eleqtrd 2732 . . . . . 6 (𝜑𝑌 ∈ (Base‘𝐶))
141, 2, 3, 4, 8, 11, 13epihom 16449 . . . . 5 (𝜑 → (𝑋𝐸𝑌) ⊆ (𝑋(Hom ‘𝐶)𝑌))
1514sselda 3636 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
166, 5, 2, 9, 12elsetchom 16778 . . . . 5 (𝜑 → (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ↔ 𝐹:𝑋𝑌))
1716biimpa 500 . . . 4 ((𝜑𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌)) → 𝐹:𝑋𝑌)
1815, 17syldan 486 . . 3 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹:𝑋𝑌)
19 frn 6091 . . . . 5 (𝐹:𝑋𝑌 → ran 𝐹𝑌)
2018, 19syl 17 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ran 𝐹𝑌)
21 ffn 6083 . . . . . . . . . . . . . . 15 (𝐹:𝑋𝑌𝐹 Fn 𝑋)
2218, 21syl 17 . . . . . . . . . . . . . 14 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹 Fn 𝑋)
23 fnfvelrn 6396 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝑋𝑥𝑋) → (𝐹𝑥) ∈ ran 𝐹)
2422, 23sylan 487 . . . . . . . . . . . . 13 (((𝜑𝐹 ∈ (𝑋𝐸𝑌)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ran 𝐹)
2524iftrued 4127 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐸𝑌)) ∧ 𝑥𝑋) → if((𝐹𝑥) ∈ ran 𝐹, 1𝑜, ∅) = 1𝑜)
2625mpteq2dva 4777 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑥𝑋 ↦ if((𝐹𝑥) ∈ ran 𝐹, 1𝑜, ∅)) = (𝑥𝑋 ↦ 1𝑜))
2718ffvelrnda 6399 . . . . . . . . . . . 12 (((𝜑𝐹 ∈ (𝑋𝐸𝑌)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ 𝑌)
2818feqmptd 6288 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹 = (𝑥𝑋 ↦ (𝐹𝑥)))
29 eqidd 2652 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) = (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)))
30 eleq1 2718 . . . . . . . . . . . . 13 (𝑎 = (𝐹𝑥) → (𝑎 ∈ ran 𝐹 ↔ (𝐹𝑥) ∈ ran 𝐹))
3130ifbid 4141 . . . . . . . . . . . 12 (𝑎 = (𝐹𝑥) → if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = if((𝐹𝑥) ∈ ran 𝐹, 1𝑜, ∅))
3227, 28, 29, 31fmptco 6436 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) ∘ 𝐹) = (𝑥𝑋 ↦ if((𝐹𝑥) ∈ ran 𝐹, 1𝑜, ∅)))
33 fconstmpt 5197 . . . . . . . . . . . . 13 (𝑌 × {1𝑜}) = (𝑎𝑌 ↦ 1𝑜)
3433a1i 11 . . . . . . . . . . . 12 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑌 × {1𝑜}) = (𝑎𝑌 ↦ 1𝑜))
35 eqidd 2652 . . . . . . . . . . . 12 (𝑎 = (𝐹𝑥) → 1𝑜 = 1𝑜)
3627, 28, 34, 35fmptco 6436 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑌 × {1𝑜}) ∘ 𝐹) = (𝑥𝑋 ↦ 1𝑜))
3726, 32, 363eqtr4d 2695 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) ∘ 𝐹) = ((𝑌 × {1𝑜}) ∘ 𝐹))
385adantr 480 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑈𝑉)
399adantr 480 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑋𝑈)
4012adantr 480 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑌𝑈)
41 setcepi.2 . . . . . . . . . . . 12 (𝜑 → 2𝑜𝑈)
4241adantr 480 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 2𝑜𝑈)
43 eqid 2651 . . . . . . . . . . . . 13 (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) = (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅))
44 1onn 7764 . . . . . . . . . . . . . . . . . 18 1𝑜 ∈ ω
4544elexi 3244 . . . . . . . . . . . . . . . . 17 1𝑜 ∈ V
4645prid2 4330 . . . . . . . . . . . . . . . 16 1𝑜 ∈ {∅, 1𝑜}
47 df2o3 7618 . . . . . . . . . . . . . . . 16 2𝑜 = {∅, 1𝑜}
4846, 47eleqtrri 2729 . . . . . . . . . . . . . . 15 1𝑜 ∈ 2𝑜
49 0ex 4823 . . . . . . . . . . . . . . . . 17 ∅ ∈ V
5049prid1 4329 . . . . . . . . . . . . . . . 16 ∅ ∈ {∅, 1𝑜}
5150, 47eleqtrri 2729 . . . . . . . . . . . . . . 15 ∅ ∈ 2𝑜
5248, 51keepel 4188 . . . . . . . . . . . . . 14 if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) ∈ 2𝑜
5352a1i 11 . . . . . . . . . . . . 13 (𝑎𝑌 → if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) ∈ 2𝑜)
5443, 53fmpti 6423 . . . . . . . . . . . 12 (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)):𝑌⟶2𝑜
5554a1i 11 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)):𝑌⟶2𝑜)
566, 38, 3, 39, 40, 42, 18, 55setcco 16780 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅))(⟨𝑋, 𝑌⟩(comp‘𝐶)2𝑜)𝐹) = ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) ∘ 𝐹))
57 fconst6g 6132 . . . . . . . . . . . 12 (1𝑜 ∈ 2𝑜 → (𝑌 × {1𝑜}):𝑌⟶2𝑜)
5848, 57mp1i 13 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑌 × {1𝑜}):𝑌⟶2𝑜)
596, 38, 3, 39, 40, 42, 18, 58setcco 16780 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑌 × {1𝑜})(⟨𝑋, 𝑌⟩(comp‘𝐶)2𝑜)𝐹) = ((𝑌 × {1𝑜}) ∘ 𝐹))
6037, 56, 593eqtr4d 2695 . . . . . . . . 9 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅))(⟨𝑋, 𝑌⟩(comp‘𝐶)2𝑜)𝐹) = ((𝑌 × {1𝑜})(⟨𝑋, 𝑌⟩(comp‘𝐶)2𝑜)𝐹))
618adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐶 ∈ Cat)
6211adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑋 ∈ (Base‘𝐶))
6313adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑌 ∈ (Base‘𝐶))
6441, 10eleqtrd 2732 . . . . . . . . . . 11 (𝜑 → 2𝑜 ∈ (Base‘𝐶))
6564adantr 480 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 2𝑜 ∈ (Base‘𝐶))
66 simpr 476 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹 ∈ (𝑋𝐸𝑌))
676, 38, 2, 40, 42elsetchom 16778 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) ∈ (𝑌(Hom ‘𝐶)2𝑜) ↔ (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)):𝑌⟶2𝑜))
6855, 67mpbird 247 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) ∈ (𝑌(Hom ‘𝐶)2𝑜))
696, 38, 2, 40, 42elsetchom 16778 . . . . . . . . . . 11 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ((𝑌 × {1𝑜}) ∈ (𝑌(Hom ‘𝐶)2𝑜) ↔ (𝑌 × {1𝑜}):𝑌⟶2𝑜))
7058, 69mpbird 247 . . . . . . . . . 10 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑌 × {1𝑜}) ∈ (𝑌(Hom ‘𝐶)2𝑜))
711, 2, 3, 4, 61, 62, 63, 65, 66, 68, 70epii 16450 . . . . . . . . 9 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅))(⟨𝑋, 𝑌⟩(comp‘𝐶)2𝑜)𝐹) = ((𝑌 × {1𝑜})(⟨𝑋, 𝑌⟩(comp‘𝐶)2𝑜)𝐹) ↔ (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) = (𝑌 × {1𝑜})))
7260, 71mpbid 222 . . . . . . . 8 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) = (𝑌 × {1𝑜}))
7372, 33syl6eq 2701 . . . . . . 7 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → (𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) = (𝑎𝑌 ↦ 1𝑜))
7452rgenw 2953 . . . . . . . 8 𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) ∈ 2𝑜
75 mpteqb 6338 . . . . . . . 8 (∀𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) ∈ 2𝑜 → ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) = (𝑎𝑌 ↦ 1𝑜) ↔ ∀𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = 1𝑜))
7674, 75ax-mp 5 . . . . . . 7 ((𝑎𝑌 ↦ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅)) = (𝑎𝑌 ↦ 1𝑜) ↔ ∀𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = 1𝑜)
7773, 76sylib 208 . . . . . 6 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ∀𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = 1𝑜)
78 1n0 7620 . . . . . . . . . 10 1𝑜 ≠ ∅
7978nesymi 2880 . . . . . . . . 9 ¬ ∅ = 1𝑜
80 iffalse 4128 . . . . . . . . . 10 𝑎 ∈ ran 𝐹 → if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = ∅)
8180eqeq1d 2653 . . . . . . . . 9 𝑎 ∈ ran 𝐹 → (if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = 1𝑜 ↔ ∅ = 1𝑜))
8279, 81mtbiri 316 . . . . . . . 8 𝑎 ∈ ran 𝐹 → ¬ if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = 1𝑜)
8382con4i 113 . . . . . . 7 (if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = 1𝑜𝑎 ∈ ran 𝐹)
8483ralimi 2981 . . . . . 6 (∀𝑎𝑌 if(𝑎 ∈ ran 𝐹, 1𝑜, ∅) = 1𝑜 → ∀𝑎𝑌 𝑎 ∈ ran 𝐹)
8577, 84syl 17 . . . . 5 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ∀𝑎𝑌 𝑎 ∈ ran 𝐹)
86 dfss3 3625 . . . . 5 (𝑌 ⊆ ran 𝐹 ↔ ∀𝑎𝑌 𝑎 ∈ ran 𝐹)
8785, 86sylibr 224 . . . 4 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝑌 ⊆ ran 𝐹)
8820, 87eqssd 3653 . . 3 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → ran 𝐹 = 𝑌)
89 dffo2 6157 . . 3 (𝐹:𝑋onto𝑌 ↔ (𝐹:𝑋𝑌 ∧ ran 𝐹 = 𝑌))
9018, 88, 89sylanbrc 699 . 2 ((𝜑𝐹 ∈ (𝑋𝐸𝑌)) → 𝐹:𝑋onto𝑌)
91 fof 6153 . . . . 5 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
9291adantl 481 . . . 4 ((𝜑𝐹:𝑋onto𝑌) → 𝐹:𝑋𝑌)
9316biimpar 501 . . . 4 ((𝜑𝐹:𝑋𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
9492, 93syldan 486 . . 3 ((𝜑𝐹:𝑋onto𝑌) → 𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌))
9510adantr 480 . . . . . 6 ((𝜑𝐹:𝑋onto𝑌) → 𝑈 = (Base‘𝐶))
9695eleq2d 2716 . . . . 5 ((𝜑𝐹:𝑋onto𝑌) → (𝑧𝑈𝑧 ∈ (Base‘𝐶)))
975ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑈𝑉)
989ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑋𝑈)
9912ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑌𝑈)
100 simprl 809 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑧𝑈)
10192adantr 480 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝐹:𝑋𝑌)
102 simprrl 821 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧))
1036, 97, 2, 99, 100elsetchom 16778 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ↔ 𝑔:𝑌𝑧))
104102, 103mpbid 222 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑔:𝑌𝑧)
1056, 97, 3, 98, 99, 100, 101, 104setcco 16780 . . . . . . . . . 10 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → (𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = (𝑔𝐹))
106 simprrr 822 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ∈ (𝑌(Hom ‘𝐶)𝑧))
1076, 97, 2, 99, 100elsetchom 16778 . . . . . . . . . . . 12 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ( ∈ (𝑌(Hom ‘𝐶)𝑧) ↔ :𝑌𝑧))
108106, 107mpbid 222 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → :𝑌𝑧)
1096, 97, 3, 98, 99, 100, 101, 108setcco 16780 . . . . . . . . . 10 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = (𝐹))
110105, 109eqeq12d 2666 . . . . . . . . 9 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) ↔ (𝑔𝐹) = (𝐹)))
111 simplr 807 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝐹:𝑋onto𝑌)
112 ffn 6083 . . . . . . . . . . . 12 (𝑔:𝑌𝑧𝑔 Fn 𝑌)
113104, 112syl 17 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → 𝑔 Fn 𝑌)
114 ffn 6083 . . . . . . . . . . . 12 (:𝑌𝑧 Fn 𝑌)
115108, 114syl 17 . . . . . . . . . . 11 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → Fn 𝑌)
116 cocan2 6587 . . . . . . . . . . 11 ((𝐹:𝑋onto𝑌𝑔 Fn 𝑌 Fn 𝑌) → ((𝑔𝐹) = (𝐹) ↔ 𝑔 = ))
117111, 113, 115, 116syl3anc 1366 . . . . . . . . . 10 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ((𝑔𝐹) = (𝐹) ↔ 𝑔 = ))
118117biimpd 219 . . . . . . . . 9 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ((𝑔𝐹) = (𝐹) → 𝑔 = ))
119110, 118sylbid 230 . . . . . . . 8 (((𝜑𝐹:𝑋onto𝑌) ∧ (𝑧𝑈 ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧)))) → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))
120119anassrs 681 . . . . . . 7 ((((𝜑𝐹:𝑋onto𝑌) ∧ 𝑧𝑈) ∧ (𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧) ∧ ∈ (𝑌(Hom ‘𝐶)𝑧))) → ((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))
121120ralrimivva 3000 . . . . . 6 (((𝜑𝐹:𝑋onto𝑌) ∧ 𝑧𝑈) → ∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))
122121ex 449 . . . . 5 ((𝜑𝐹:𝑋onto𝑌) → (𝑧𝑈 → ∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = )))
12396, 122sylbird 250 . . . 4 ((𝜑𝐹:𝑋onto𝑌) → (𝑧 ∈ (Base‘𝐶) → ∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = )))
124123ralrimiv 2994 . . 3 ((𝜑𝐹:𝑋onto𝑌) → ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))
1251, 2, 3, 4, 8, 11, 13isepi2 16448 . . . 4 (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))))
126125adantr 480 . . 3 ((𝜑𝐹:𝑋onto𝑌) → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑌(Hom ‘𝐶)𝑧)∀ ∈ (𝑌(Hom ‘𝐶)𝑧)((𝑔(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) = ((⟨𝑋, 𝑌⟩(comp‘𝐶)𝑧)𝐹) → 𝑔 = ))))
12794, 124, 126mpbir2and 977 . 2 ((𝜑𝐹:𝑋onto𝑌) → 𝐹 ∈ (𝑋𝐸𝑌))
12890, 127impbida 895 1 (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ 𝐹:𝑋onto𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wss 3607  c0 3948  ifcif 4119  {csn 4210  {cpr 4212  cop 4216  cmpt 4762   × cxp 5141  ran crn 5144  ccom 5147   Fn wfn 5921  wf 5922  ontowfo 5924  cfv 5926  (class class class)co 6690  ωcom 7107  1𝑜c1o 7598  2𝑜c2o 7599  Basecbs 15904  Hom chom 15999  compcco 16000  Catccat 16372  Epicepi 16436  SetCatcsetc 16772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-hom 16013  df-cco 16014  df-cat 16376  df-cid 16377  df-oppc 16419  df-mon 16437  df-epi 16438  df-setc 16773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator