![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setcco | Structured version Visualization version GIF version |
Description: Composition in the category of sets. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
setcbas.c | ⊢ 𝐶 = (SetCat‘𝑈) |
setcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
setcco.o | ⊢ · = (comp‘𝐶) |
setcco.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
setcco.y | ⊢ (𝜑 → 𝑌 ∈ 𝑈) |
setcco.z | ⊢ (𝜑 → 𝑍 ∈ 𝑈) |
setcco.f | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
setcco.g | ⊢ (𝜑 → 𝐺:𝑌⟶𝑍) |
Ref | Expression |
---|---|
setcco | ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setcbas.c | . . . 4 ⊢ 𝐶 = (SetCat‘𝑈) | |
2 | setcbas.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | setcco.o | . . . 4 ⊢ · = (comp‘𝐶) | |
4 | 1, 2, 3 | setccofval 16953 | . . 3 ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑𝑚 (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑𝑚 (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) |
5 | simprr 813 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑧 = 𝑍) | |
6 | simprl 811 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → 𝑣 = 〈𝑋, 𝑌〉) | |
7 | 6 | fveq2d 6357 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = (2nd ‘〈𝑋, 𝑌〉)) |
8 | setcco.x | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
9 | setcco.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝑈) | |
10 | op2ndg 7347 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) | |
11 | 8, 9, 10 | syl2anc 696 | . . . . . . 7 ⊢ (𝜑 → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
12 | 11 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘〈𝑋, 𝑌〉) = 𝑌) |
13 | 7, 12 | eqtrd 2794 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (2nd ‘𝑣) = 𝑌) |
14 | 5, 13 | oveq12d 6832 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑧 ↑𝑚 (2nd ‘𝑣)) = (𝑍 ↑𝑚 𝑌)) |
15 | 6 | fveq2d 6357 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = (1st ‘〈𝑋, 𝑌〉)) |
16 | op1stg 7346 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
17 | 8, 9, 16 | syl2anc 696 | . . . . . . 7 ⊢ (𝜑 → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
18 | 17 | adantr 472 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
19 | 15, 18 | eqtrd 2794 | . . . . 5 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (1st ‘𝑣) = 𝑋) |
20 | 13, 19 | oveq12d 6832 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → ((2nd ‘𝑣) ↑𝑚 (1st ‘𝑣)) = (𝑌 ↑𝑚 𝑋)) |
21 | eqidd 2761 | . . . 4 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∘ 𝑓) = (𝑔 ∘ 𝑓)) | |
22 | 14, 20, 21 | mpt2eq123dv 6883 | . . 3 ⊢ ((𝜑 ∧ (𝑣 = 〈𝑋, 𝑌〉 ∧ 𝑧 = 𝑍)) → (𝑔 ∈ (𝑧 ↑𝑚 (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑𝑚 (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ (𝑍 ↑𝑚 𝑌), 𝑓 ∈ (𝑌 ↑𝑚 𝑋) ↦ (𝑔 ∘ 𝑓))) |
23 | opelxpi 5305 | . . . 4 ⊢ ((𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → 〈𝑋, 𝑌〉 ∈ (𝑈 × 𝑈)) | |
24 | 8, 9, 23 | syl2anc 696 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ (𝑈 × 𝑈)) |
25 | setcco.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑈) | |
26 | ovex 6842 | . . . . 5 ⊢ (𝑍 ↑𝑚 𝑌) ∈ V | |
27 | ovex 6842 | . . . . 5 ⊢ (𝑌 ↑𝑚 𝑋) ∈ V | |
28 | 26, 27 | mpt2ex 7416 | . . . 4 ⊢ (𝑔 ∈ (𝑍 ↑𝑚 𝑌), 𝑓 ∈ (𝑌 ↑𝑚 𝑋) ↦ (𝑔 ∘ 𝑓)) ∈ V |
29 | 28 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑔 ∈ (𝑍 ↑𝑚 𝑌), 𝑓 ∈ (𝑌 ↑𝑚 𝑋) ↦ (𝑔 ∘ 𝑓)) ∈ V) |
30 | 4, 22, 24, 25, 29 | ovmpt2d 6954 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 · 𝑍) = (𝑔 ∈ (𝑍 ↑𝑚 𝑌), 𝑓 ∈ (𝑌 ↑𝑚 𝑋) ↦ (𝑔 ∘ 𝑓))) |
31 | simprl 811 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑔 = 𝐺) | |
32 | simprr 813 | . . 3 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) | |
33 | 31, 32 | coeq12d 5442 | . 2 ⊢ ((𝜑 ∧ (𝑔 = 𝐺 ∧ 𝑓 = 𝐹)) → (𝑔 ∘ 𝑓) = (𝐺 ∘ 𝐹)) |
34 | setcco.g | . . 3 ⊢ (𝜑 → 𝐺:𝑌⟶𝑍) | |
35 | 25, 9 | elmapd 8039 | . . 3 ⊢ (𝜑 → (𝐺 ∈ (𝑍 ↑𝑚 𝑌) ↔ 𝐺:𝑌⟶𝑍)) |
36 | 34, 35 | mpbird 247 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝑍 ↑𝑚 𝑌)) |
37 | setcco.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
38 | 9, 8 | elmapd 8039 | . . 3 ⊢ (𝜑 → (𝐹 ∈ (𝑌 ↑𝑚 𝑋) ↔ 𝐹:𝑋⟶𝑌)) |
39 | 37, 38 | mpbird 247 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑌 ↑𝑚 𝑋)) |
40 | coexg 7283 | . . 3 ⊢ ((𝐺 ∈ (𝑍 ↑𝑚 𝑌) ∧ 𝐹 ∈ (𝑌 ↑𝑚 𝑋)) → (𝐺 ∘ 𝐹) ∈ V) | |
41 | 36, 39, 40 | syl2anc 696 | . 2 ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ V) |
42 | 30, 33, 36, 39, 41 | ovmpt2d 6954 | 1 ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 〈cop 4327 × cxp 5264 ∘ ccom 5270 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ↦ cmpt2 6816 1st c1st 7332 2nd c2nd 7333 ↑𝑚 cmap 8025 compcco 16175 SetCatcsetc 16946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-fz 12540 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-hom 16188 df-cco 16189 df-setc 16947 |
This theorem is referenced by: setccatid 16955 setcmon 16958 setcepi 16959 setcsect 16960 resssetc 16963 funcestrcsetclem9 17009 funcsetcestrclem9 17024 hofcllem 17119 yonedalem4c 17138 yonedalem3b 17140 yonedainv 17142 funcringcsetcALTV2lem9 42572 funcringcsetclem9ALTV 42595 |
Copyright terms: Public domain | W3C validator |