![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > setcbas | Structured version Visualization version GIF version |
Description: Set of objects of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
setcbas.c | ⊢ 𝐶 = (SetCat‘𝑈) |
setcbas.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
Ref | Expression |
---|---|
setcbas | ⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setcbas.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
2 | catstr 16823 | . . . 4 ⊢ {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑𝑚 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑𝑚 (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑𝑚 (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉} Struct 〈1, ;15〉 | |
3 | baseid 16125 | . . . 4 ⊢ Base = Slot (Base‘ndx) | |
4 | snsstp1 4480 | . . . 4 ⊢ {〈(Base‘ndx), 𝑈〉} ⊆ {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑𝑚 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑𝑚 (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑𝑚 (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉} | |
5 | 2, 3, 4 | strfv 16113 | . . 3 ⊢ (𝑈 ∈ 𝑉 → 𝑈 = (Base‘{〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑𝑚 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑𝑚 (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑𝑚 (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉})) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝑈 = (Base‘{〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑𝑚 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑𝑚 (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑𝑚 (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉})) |
7 | setcbas.c | . . . 4 ⊢ 𝐶 = (SetCat‘𝑈) | |
8 | eqidd 2771 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑𝑚 𝑥)) = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑𝑚 𝑥))) | |
9 | eqidd 2771 | . . . 4 ⊢ (𝜑 → (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑𝑚 (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑𝑚 (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑𝑚 (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑𝑚 (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))) | |
10 | 7, 1, 8, 9 | setcval 16933 | . . 3 ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑𝑚 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑𝑚 (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑𝑚 (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) |
11 | 10 | fveq2d 6336 | . 2 ⊢ (𝜑 → (Base‘𝐶) = (Base‘{〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ (𝑦 ↑𝑚 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ (𝑧 ↑𝑚 (2nd ‘𝑣)), 𝑓 ∈ ((2nd ‘𝑣) ↑𝑚 (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉})) |
12 | 6, 11 | eqtr4d 2807 | 1 ⊢ (𝜑 → 𝑈 = (Base‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 {ctp 4318 〈cop 4320 × cxp 5247 ∘ ccom 5253 ‘cfv 6031 (class class class)co 6792 ↦ cmpt2 6794 1st c1st 7312 2nd c2nd 7313 ↑𝑚 cmap 8008 1c1 10138 5c5 11274 ;cdc 11694 ndxcnx 16060 Basecbs 16063 Hom chom 16159 compcco 16160 SetCatcsetc 16931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-fz 12533 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-hom 16173 df-cco 16174 df-setc 16932 |
This theorem is referenced by: setccatid 16940 setcmon 16943 setcepi 16944 setcsect 16945 setcinv 16946 setciso 16947 resssetc 16948 funcsetcres2 16949 funcestrcsetclem3 16989 equivestrcsetc 16999 setc1strwun 17000 funcsetcestrclem7 17008 funcsetcestrclem8 17009 funcsetcestrclem9 17010 fthsetcestrc 17012 fullsetcestrc 17013 hofcl 17106 yonedalem3a 17121 yonedalem4c 17124 yonedalem3b 17126 yonedalem3 17127 yonedainv 17128 yonffthlem 17129 funcringcsetcALTV2lem3 42556 funcringcsetclem3ALTV 42579 |
Copyright terms: Public domain | W3C validator |