![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sess2 | Structured version Visualization version GIF version |
Description: Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
sess2 | ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Se 𝐵 → 𝑅 Se 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv 3699 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V)) | |
2 | rabss2 3718 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥}) | |
3 | ssexg 4837 | . . . . . 6 ⊢ (({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∧ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V) → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
4 | 3 | ex 449 | . . . . 5 ⊢ ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ⊆ {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} → ({𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → ({𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
6 | 5 | ralimdv 2992 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
7 | 1, 6 | syld 47 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V → ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V)) |
8 | df-se 5103 | . 2 ⊢ (𝑅 Se 𝐵 ↔ ∀𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} ∈ V) | |
9 | df-se 5103 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
10 | 7, 8, 9 | 3imtr4g 285 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Se 𝐵 → 𝑅 Se 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ∀wral 2941 {crab 2945 Vcvv 3231 ⊆ wss 3607 class class class wbr 4685 Se wse 5100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rab 2950 df-v 3233 df-in 3614 df-ss 3621 df-se 5103 |
This theorem is referenced by: seeq2 5116 wereu2 5140 wfrlem5 7464 frpomin 31863 frmin 31867 frrlem5 31909 |
Copyright terms: Public domain | W3C validator |