MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqz Structured version   Visualization version   GIF version

Theorem seqz 13063
Description: If the operation + has an absorbing element 𝑍 (a.k.a. zero element), then any sequence containing a 𝑍 evaluates to 𝑍. (Contributed by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqhomo.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqhomo.2 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seqz.3 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑍)
seqz.4 ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑍)
seqz.5 (𝜑𝐾 ∈ (𝑀...𝑁))
seqz.6 (𝜑𝑁𝑉)
seqz.7 (𝜑 → (𝐹𝐾) = 𝑍)
Assertion
Ref Expression
seqz (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐾,𝑦   𝑥, + ,𝑦   𝑥,𝑆,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem seqz
StepHypRef Expression
1 seqz.5 . . . 4 (𝜑𝐾 ∈ (𝑀...𝑁))
2 elfzuz 12551 . . . 4 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
31, 2syl 17 . . 3 (𝜑𝐾 ∈ (ℤ𝑀))
4 eluzelz 11909 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
53, 4syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
6 seq1 13028 . . . . . . . 8 (𝐾 ∈ ℤ → (seq𝐾( + , 𝐹)‘𝐾) = (𝐹𝐾))
75, 6syl 17 . . . . . . 7 (𝜑 → (seq𝐾( + , 𝐹)‘𝐾) = (𝐹𝐾))
8 seqz.7 . . . . . . 7 (𝜑 → (𝐹𝐾) = 𝑍)
97, 8eqtrd 2794 . . . . . 6 (𝜑 → (seq𝐾( + , 𝐹)‘𝐾) = 𝑍)
10 seqeq1 13018 . . . . . . . 8 (𝐾 = 𝑀 → seq𝐾( + , 𝐹) = seq𝑀( + , 𝐹))
1110fveq1d 6355 . . . . . . 7 (𝐾 = 𝑀 → (seq𝐾( + , 𝐹)‘𝐾) = (seq𝑀( + , 𝐹)‘𝐾))
1211eqeq1d 2762 . . . . . 6 (𝐾 = 𝑀 → ((seq𝐾( + , 𝐹)‘𝐾) = 𝑍 ↔ (seq𝑀( + , 𝐹)‘𝐾) = 𝑍))
139, 12syl5ibcom 235 . . . . 5 (𝜑 → (𝐾 = 𝑀 → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍))
14 eluzel2 11904 . . . . . . . . 9 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
153, 14syl 17 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
16 seqm1 13032 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝐾) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + (𝐹𝐾)))
1715, 16sylan 489 . . . . . . 7 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝐾) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + (𝐹𝐾)))
188adantr 472 . . . . . . . . 9 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝐾) = 𝑍)
1918oveq2d 6830 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + (𝐹𝐾)) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍))
20 oveq1 6821 . . . . . . . . . 10 (𝑥 = (seq𝑀( + , 𝐹)‘(𝐾 − 1)) → (𝑥 + 𝑍) = ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍))
2120eqeq1d 2762 . . . . . . . . 9 (𝑥 = (seq𝑀( + , 𝐹)‘(𝐾 − 1)) → ((𝑥 + 𝑍) = 𝑍 ↔ ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍) = 𝑍))
22 seqz.4 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (𝑥 + 𝑍) = 𝑍)
2322ralrimiva 3104 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆 (𝑥 + 𝑍) = 𝑍)
2423adantr 472 . . . . . . . . 9 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ∀𝑥𝑆 (𝑥 + 𝑍) = 𝑍)
25 eluzp1m1 11923 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐾 − 1) ∈ (ℤ𝑀))
2615, 25sylan 489 . . . . . . . . . 10 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝐾 − 1) ∈ (ℤ𝑀))
27 fzssp1 12597 . . . . . . . . . . . . . . 15 (𝑀...(𝐾 − 1)) ⊆ (𝑀...((𝐾 − 1) + 1))
285zcnd 11695 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℂ)
29 ax-1cn 10206 . . . . . . . . . . . . . . . . 17 1 ∈ ℂ
30 npcan 10502 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 − 1) + 1) = 𝐾)
3128, 29, 30sylancl 697 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐾 − 1) + 1) = 𝐾)
3231oveq2d 6830 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀...((𝐾 − 1) + 1)) = (𝑀...𝐾))
3327, 32syl5sseq 3794 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝐾))
34 elfzuz3 12552 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
351, 34syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ (ℤ𝐾))
36 fzss2 12594 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ𝐾) → (𝑀...𝐾) ⊆ (𝑀...𝑁))
3735, 36syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑀...𝐾) ⊆ (𝑀...𝑁))
3833, 37sstrd 3754 . . . . . . . . . . . . 13 (𝜑 → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁))
3938adantr 472 . . . . . . . . . . . 12 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (𝑀...(𝐾 − 1)) ⊆ (𝑀...𝑁))
4039sselda 3744 . . . . . . . . . . 11 (((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → 𝑥 ∈ (𝑀...𝑁))
41 seqhomo.2 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
4241adantlr 753 . . . . . . . . . . 11 (((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
4340, 42syldan 488 . . . . . . . . . 10 (((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) ∧ 𝑥 ∈ (𝑀...(𝐾 − 1))) → (𝐹𝑥) ∈ 𝑆)
44 seqhomo.1 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4544adantlr 753 . . . . . . . . . 10 (((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4626, 43, 45seqcl 13035 . . . . . . . . 9 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘(𝐾 − 1)) ∈ 𝑆)
4721, 24, 46rspcdva 3455 . . . . . . . 8 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + 𝑍) = 𝑍)
4819, 47eqtrd 2794 . . . . . . 7 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → ((seq𝑀( + , 𝐹)‘(𝐾 − 1)) + (𝐹𝐾)) = 𝑍)
4917, 48eqtrd 2794 . . . . . 6 ((𝜑𝐾 ∈ (ℤ‘(𝑀 + 1))) → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍)
5049ex 449 . . . . 5 (𝜑 → (𝐾 ∈ (ℤ‘(𝑀 + 1)) → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍))
51 uzp1 11934 . . . . . 6 (𝐾 ∈ (ℤ𝑀) → (𝐾 = 𝑀𝐾 ∈ (ℤ‘(𝑀 + 1))))
523, 51syl 17 . . . . 5 (𝜑 → (𝐾 = 𝑀𝐾 ∈ (ℤ‘(𝑀 + 1))))
5313, 50, 52mpjaod 395 . . . 4 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = 𝑍)
5453, 8eqtr4d 2797 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐹𝐾))
55 eqidd 2761 . . 3 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑥) = (𝐹𝑥))
563, 54, 35, 55seqfveq2 13037 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐹)‘𝑁))
57 fvex 6363 . . . . . 6 (𝐹𝐾) ∈ V
5857elsn 4336 . . . . 5 ((𝐹𝐾) ∈ {𝑍} ↔ (𝐹𝐾) = 𝑍)
598, 58sylibr 224 . . . 4 (𝜑 → (𝐹𝐾) ∈ {𝑍})
60 simprl 811 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → 𝑥 ∈ {𝑍})
61 velsn 4337 . . . . . . . 8 (𝑥 ∈ {𝑍} ↔ 𝑥 = 𝑍)
6260, 61sylib 208 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → 𝑥 = 𝑍)
6362oveq1d 6829 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → (𝑥 + 𝑦) = (𝑍 + 𝑦))
64 oveq2 6822 . . . . . . . 8 (𝑥 = 𝑦 → (𝑍 + 𝑥) = (𝑍 + 𝑦))
6564eqeq1d 2762 . . . . . . 7 (𝑥 = 𝑦 → ((𝑍 + 𝑥) = 𝑍 ↔ (𝑍 + 𝑦) = 𝑍))
66 seqz.3 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑍 + 𝑥) = 𝑍)
6766ralrimiva 3104 . . . . . . . 8 (𝜑 → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑍)
6867adantr 472 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → ∀𝑥𝑆 (𝑍 + 𝑥) = 𝑍)
69 simprr 813 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → 𝑦𝑆)
7065, 68, 69rspcdva 3455 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → (𝑍 + 𝑦) = 𝑍)
7163, 70eqtrd 2794 . . . . 5 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → (𝑥 + 𝑦) = 𝑍)
72 ovex 6842 . . . . . 6 (𝑥 + 𝑦) ∈ V
7372elsn 4336 . . . . 5 ((𝑥 + 𝑦) ∈ {𝑍} ↔ (𝑥 + 𝑦) = 𝑍)
7471, 73sylibr 224 . . . 4 ((𝜑 ∧ (𝑥 ∈ {𝑍} ∧ 𝑦𝑆)) → (𝑥 + 𝑦) ∈ {𝑍})
75 peano2uz 11954 . . . . . . . 8 (𝐾 ∈ (ℤ𝑀) → (𝐾 + 1) ∈ (ℤ𝑀))
763, 75syl 17 . . . . . . 7 (𝜑 → (𝐾 + 1) ∈ (ℤ𝑀))
77 fzss1 12593 . . . . . . 7 ((𝐾 + 1) ∈ (ℤ𝑀) → ((𝐾 + 1)...𝑁) ⊆ (𝑀...𝑁))
7876, 77syl 17 . . . . . 6 (𝜑 → ((𝐾 + 1)...𝑁) ⊆ (𝑀...𝑁))
7978sselda 3744 . . . . 5 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
8079, 41syldan 488 . . . 4 ((𝜑𝑥 ∈ ((𝐾 + 1)...𝑁)) → (𝐹𝑥) ∈ 𝑆)
8159, 74, 35, 80seqcl2 13033 . . 3 (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) ∈ {𝑍})
82 elsni 4338 . . 3 ((seq𝐾( + , 𝐹)‘𝑁) ∈ {𝑍} → (seq𝐾( + , 𝐹)‘𝑁) = 𝑍)
8381, 82syl 17 . 2 (𝜑 → (seq𝐾( + , 𝐹)‘𝑁) = 𝑍)
8456, 83eqtrd 2794 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1632  wcel 2139  wral 3050  wss 3715  {csn 4321  cfv 6049  (class class class)co 6814  cc 10146  1c1 10149   + caddc 10151  cmin 10478  cz 11589  cuz 11899  ...cfz 12539  seqcseq 13015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-seq 13016
This theorem is referenced by:  bcval5  13319  elqaalem2  24294  lgsne0  25280
  Copyright terms: Public domain W3C validator