![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqomsuc | Structured version Visualization version GIF version |
Description: Value of an index-aware recursive definition at a successor. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
seqom.a | ⊢ 𝐺 = seq𝜔(𝐹, 𝐼) |
Ref | Expression |
---|---|
seqomsuc | ⊢ (𝐴 ∈ ω → (𝐺‘suc 𝐴) = (𝐴𝐹(𝐺‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqomlem0 7589 | . . 3 ⊢ rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) = rec((𝑐 ∈ ω, 𝑑 ∈ V ↦ 〈suc 𝑐, (𝑐𝐹𝑑)〉), 〈∅, ( I ‘𝐼)〉) | |
2 | 1 | seqomlem4 7593 | . 2 ⊢ (𝐴 ∈ ω → ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω)‘suc 𝐴) = (𝐴𝐹((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω)‘𝐴))) |
3 | seqom.a | . . . 4 ⊢ 𝐺 = seq𝜔(𝐹, 𝐼) | |
4 | df-seqom 7588 | . . . 4 ⊢ seq𝜔(𝐹, 𝐼) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω) | |
5 | 3, 4 | eqtri 2673 | . . 3 ⊢ 𝐺 = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω) |
6 | 5 | fveq1i 6230 | . 2 ⊢ (𝐺‘suc 𝐴) = ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω)‘suc 𝐴) |
7 | 5 | fveq1i 6230 | . . 3 ⊢ (𝐺‘𝐴) = ((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω)‘𝐴) |
8 | 7 | oveq2i 6701 | . 2 ⊢ (𝐴𝐹(𝐺‘𝐴)) = (𝐴𝐹((rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ 〈suc 𝑎, (𝑎𝐹𝑏)〉), 〈∅, ( I ‘𝐼)〉) “ ω)‘𝐴)) |
9 | 2, 6, 8 | 3eqtr4g 2710 | 1 ⊢ (𝐴 ∈ ω → (𝐺‘suc 𝐴) = (𝐴𝐹(𝐺‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∅c0 3948 〈cop 4216 I cid 5052 “ cima 5146 suc csuc 5763 ‘cfv 5926 (class class class)co 6690 ↦ cmpt2 6692 ωcom 7107 reccrdg 7550 seq𝜔cseqom 7587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-seqom 7588 |
This theorem is referenced by: cantnfvalf 8600 cantnfval2 8604 cantnfsuc 8605 cnfcomlem 8634 fseqenlem1 8885 fin23lem12 9191 |
Copyright terms: Public domain | W3C validator |