MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem4 Structured version   Visualization version   GIF version

Theorem seqomlem4 7701
Description: Lemma for seq𝜔. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.)
Hypothesis
Ref Expression
seqomlem.a 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
Assertion
Ref Expression
seqomlem4 (𝐴 ∈ ω → ((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)))
Distinct variable groups:   𝑄,𝑖,𝑣   𝐴,𝑖,𝑣   𝑖,𝐹,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑖)

Proof of Theorem seqomlem4
StepHypRef Expression
1 peano2 7233 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
2 fvres 6348 . . . . . . 7 (suc 𝐴 ∈ ω → ((𝑄 ↾ ω)‘suc 𝐴) = (𝑄‘suc 𝐴))
31, 2syl 17 . . . . . 6 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘suc 𝐴) = (𝑄‘suc 𝐴))
4 frsuc 7685 . . . . . . . 8 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝐴) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝐴)))
5 fvres 6348 . . . . . . . . . 10 (suc 𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘suc 𝐴))
61, 5syl 17 . . . . . . . . 9 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘suc 𝐴))
7 seqomlem.a . . . . . . . . . 10 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
87fveq1i 6333 . . . . . . . . 9 (𝑄‘suc 𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘suc 𝐴)
96, 8syl6eqr 2823 . . . . . . . 8 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝐴) = (𝑄‘suc 𝐴))
10 fvres 6348 . . . . . . . . . 10 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘𝐴))
117fveq1i 6333 . . . . . . . . . 10 (𝑄𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘𝐴)
1210, 11syl6eqr 2823 . . . . . . . . 9 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝐴) = (𝑄𝐴))
1312fveq2d 6336 . . . . . . . 8 (𝐴 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝐴)) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝐴)))
144, 9, 133eqtr3d 2813 . . . . . . 7 (𝐴 ∈ ω → (𝑄‘suc 𝐴) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝐴)))
157seqomlem1 7698 . . . . . . . 8 (𝐴 ∈ ω → (𝑄𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
1615fveq2d 6336 . . . . . . 7 (𝐴 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝐴)) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝐴, (2nd ‘(𝑄𝐴))⟩))
17 df-ov 6796 . . . . . . . 8 (𝐴(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝐴))) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
18 fvex 6342 . . . . . . . . . 10 (2nd ‘(𝑄𝐴)) ∈ V
19 suceq 5933 . . . . . . . . . . . 12 (𝑖 = 𝐴 → suc 𝑖 = suc 𝐴)
20 oveq1 6800 . . . . . . . . . . . 12 (𝑖 = 𝐴 → (𝑖𝐹𝑣) = (𝐴𝐹𝑣))
2119, 20opeq12d 4547 . . . . . . . . . . 11 (𝑖 = 𝐴 → ⟨suc 𝑖, (𝑖𝐹𝑣)⟩ = ⟨suc 𝐴, (𝐴𝐹𝑣)⟩)
22 oveq2 6801 . . . . . . . . . . . 12 (𝑣 = (2nd ‘(𝑄𝐴)) → (𝐴𝐹𝑣) = (𝐴𝐹(2nd ‘(𝑄𝐴))))
2322opeq2d 4546 . . . . . . . . . . 11 (𝑣 = (2nd ‘(𝑄𝐴)) → ⟨suc 𝐴, (𝐴𝐹𝑣)⟩ = ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩)
24 eqid 2771 . . . . . . . . . . 11 (𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩) = (𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)
25 opex 5060 . . . . . . . . . . 11 ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩ ∈ V
2621, 23, 24, 25ovmpt2 6943 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ (2nd ‘(𝑄𝐴)) ∈ V) → (𝐴(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝐴))) = ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩)
2718, 26mpan2 671 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝐴))) = ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩)
28 fvres 6348 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘𝐴) = (𝑄𝐴))
2928, 15eqtrd 2805 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
30 frfnom 7683 . . . . . . . . . . . . . . . . . 18 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω
317reseq1i 5530 . . . . . . . . . . . . . . . . . . 19 (𝑄 ↾ ω) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)
3231fneq1i 6125 . . . . . . . . . . . . . . . . . 18 ((𝑄 ↾ ω) Fn ω ↔ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω)
3330, 32mpbir 221 . . . . . . . . . . . . . . . . 17 (𝑄 ↾ ω) Fn ω
34 fnfvelrn 6499 . . . . . . . . . . . . . . . . 17 (((𝑄 ↾ ω) Fn ω ∧ 𝐴 ∈ ω) → ((𝑄 ↾ ω)‘𝐴) ∈ ran (𝑄 ↾ ω))
3533, 34mpan 670 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘𝐴) ∈ ran (𝑄 ↾ ω))
3629, 35eqeltrrd 2851 . . . . . . . . . . . . . . 15 (𝐴 ∈ ω → ⟨𝐴, (2nd ‘(𝑄𝐴))⟩ ∈ ran (𝑄 ↾ ω))
37 df-ima 5262 . . . . . . . . . . . . . . 15 (𝑄 “ ω) = ran (𝑄 ↾ ω)
3836, 37syl6eleqr 2861 . . . . . . . . . . . . . 14 (𝐴 ∈ ω → ⟨𝐴, (2nd ‘(𝑄𝐴))⟩ ∈ (𝑄 “ ω))
39 df-br 4787 . . . . . . . . . . . . . 14 (𝐴(𝑄 “ ω)(2nd ‘(𝑄𝐴)) ↔ ⟨𝐴, (2nd ‘(𝑄𝐴))⟩ ∈ (𝑄 “ ω))
4038, 39sylibr 224 . . . . . . . . . . . . 13 (𝐴 ∈ ω → 𝐴(𝑄 “ ω)(2nd ‘(𝑄𝐴)))
417seqomlem2 7699 . . . . . . . . . . . . . 14 (𝑄 “ ω) Fn ω
42 fnbrfvb 6377 . . . . . . . . . . . . . 14 (((𝑄 “ ω) Fn ω ∧ 𝐴 ∈ ω) → (((𝑄 “ ω)‘𝐴) = (2nd ‘(𝑄𝐴)) ↔ 𝐴(𝑄 “ ω)(2nd ‘(𝑄𝐴))))
4341, 42mpan 670 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (((𝑄 “ ω)‘𝐴) = (2nd ‘(𝑄𝐴)) ↔ 𝐴(𝑄 “ ω)(2nd ‘(𝑄𝐴))))
4440, 43mpbird 247 . . . . . . . . . . . 12 (𝐴 ∈ ω → ((𝑄 “ ω)‘𝐴) = (2nd ‘(𝑄𝐴)))
4544eqcomd 2777 . . . . . . . . . . 11 (𝐴 ∈ ω → (2nd ‘(𝑄𝐴)) = ((𝑄 “ ω)‘𝐴))
4645oveq2d 6809 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐴𝐹(2nd ‘(𝑄𝐴))) = (𝐴𝐹((𝑄 “ ω)‘𝐴)))
4746opeq2d 4546 . . . . . . . . 9 (𝐴 ∈ ω → ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩ = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
4827, 47eqtrd 2805 . . . . . . . 8 (𝐴 ∈ ω → (𝐴(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝐴))) = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
4917, 48syl5eqr 2819 . . . . . . 7 (𝐴 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝐴, (2nd ‘(𝑄𝐴))⟩) = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
5014, 16, 493eqtrd 2809 . . . . . 6 (𝐴 ∈ ω → (𝑄‘suc 𝐴) = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
513, 50eqtrd 2805 . . . . 5 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘suc 𝐴) = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
52 fnfvelrn 6499 . . . . . 6 (((𝑄 ↾ ω) Fn ω ∧ suc 𝐴 ∈ ω) → ((𝑄 ↾ ω)‘suc 𝐴) ∈ ran (𝑄 ↾ ω))
5333, 1, 52sylancr 575 . . . . 5 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘suc 𝐴) ∈ ran (𝑄 ↾ ω))
5451, 53eqeltrrd 2851 . . . 4 (𝐴 ∈ ω → ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩ ∈ ran (𝑄 ↾ ω))
5554, 37syl6eleqr 2861 . . 3 (𝐴 ∈ ω → ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩ ∈ (𝑄 “ ω))
56 df-br 4787 . . 3 (suc 𝐴(𝑄 “ ω)(𝐴𝐹((𝑄 “ ω)‘𝐴)) ↔ ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩ ∈ (𝑄 “ ω))
5755, 56sylibr 224 . 2 (𝐴 ∈ ω → suc 𝐴(𝑄 “ ω)(𝐴𝐹((𝑄 “ ω)‘𝐴)))
58 fnbrfvb 6377 . . 3 (((𝑄 “ ω) Fn ω ∧ suc 𝐴 ∈ ω) → (((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)) ↔ suc 𝐴(𝑄 “ ω)(𝐴𝐹((𝑄 “ ω)‘𝐴))))
5941, 1, 58sylancr 575 . 2 (𝐴 ∈ ω → (((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)) ↔ suc 𝐴(𝑄 “ ω)(𝐴𝐹((𝑄 “ ω)‘𝐴))))
6057, 59mpbird 247 1 (𝐴 ∈ ω → ((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1631  wcel 2145  Vcvv 3351  c0 4063  cop 4322   class class class wbr 4786   I cid 5156  ran crn 5250  cres 5251  cima 5252  suc csuc 5868   Fn wfn 6026  cfv 6031  (class class class)co 6793  cmpt2 6795  ωcom 7212  2nd c2nd 7314  reccrdg 7658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659
This theorem is referenced by:  seqomsuc  7705
  Copyright terms: Public domain W3C validator