MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomeq12 Structured version   Visualization version   GIF version

Theorem seqomeq12 7719
Description: Equality theorem for seq𝜔. (Contributed by Stefan O'Rear, 1-Nov-2014.)
Assertion
Ref Expression
seqomeq12 ((𝐴 = 𝐵𝐶 = 𝐷) → seq𝜔(𝐴, 𝐶) = seq𝜔(𝐵, 𝐷))

Proof of Theorem seqomeq12
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq 6820 . . . . . 6 (𝐴 = 𝐵 → (𝑎𝐴𝑏) = (𝑎𝐵𝑏))
21opeq2d 4560 . . . . 5 (𝐴 = 𝐵 → ⟨suc 𝑎, (𝑎𝐴𝑏)⟩ = ⟨suc 𝑎, (𝑎𝐵𝑏)⟩)
32mpt2eq3dv 6887 . . . 4 (𝐴 = 𝐵 → (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩) = (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩))
4 fveq2 6353 . . . . 5 (𝐶 = 𝐷 → ( I ‘𝐶) = ( I ‘𝐷))
54opeq2d 4560 . . . 4 (𝐶 = 𝐷 → ⟨∅, ( I ‘𝐶)⟩ = ⟨∅, ( I ‘𝐷)⟩)
6 rdgeq12 7679 . . . 4 (((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩) = (𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩) ∧ ⟨∅, ( I ‘𝐶)⟩ = ⟨∅, ( I ‘𝐷)⟩) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) = rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩))
73, 5, 6syl2an 495 . . 3 ((𝐴 = 𝐵𝐶 = 𝐷) → rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) = rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩))
87imaeq1d 5623 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) “ ω) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩) “ ω))
9 df-seqom 7713 . 2 seq𝜔(𝐴, 𝐶) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐴𝑏)⟩), ⟨∅, ( I ‘𝐶)⟩) “ ω)
10 df-seqom 7713 . 2 seq𝜔(𝐵, 𝐷) = (rec((𝑎 ∈ ω, 𝑏 ∈ V ↦ ⟨suc 𝑎, (𝑎𝐵𝑏)⟩), ⟨∅, ( I ‘𝐷)⟩) “ ω)
118, 9, 103eqtr4g 2819 1 ((𝐴 = 𝐵𝐶 = 𝐷) → seq𝜔(𝐴, 𝐶) = seq𝜔(𝐵, 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  Vcvv 3340  c0 4058  cop 4327   I cid 5173  cima 5269  suc csuc 5886  cfv 6049  (class class class)co 6814  cmpt2 6816  ωcom 7231  reccrdg 7675  seq𝜔cseqom 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-xp 5272  df-cnv 5274  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-iota 6012  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-seqom 7713
This theorem is referenced by:  cantnffval  8735  cantnfval  8740  cantnfres  8749  cnfcomlem  8771  cnfcom2  8774  fin23lem33  9379
  Copyright terms: Public domain W3C validator