MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqfn Structured version   Visualization version   GIF version

Theorem seqfn 13028
Description: The sequence builder function is a function. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
seqfn (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ𝑀))

Proof of Theorem seqfn
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqeq1 13019 . . 3 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → seq𝑀( + , 𝐹) = seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹))
2 fveq2 6354 . . 3 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ𝑀) = (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)))
31, 2fneq12d 6145 . 2 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (seq𝑀( + , 𝐹) Fn (ℤ𝑀) ↔ seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹) Fn (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))))
4 0z 11601 . . . 4 0 ∈ ℤ
54elimel 4295 . . 3 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
6 eqid 2761 . . 3 (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω) = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), if(𝑀 ∈ ℤ, 𝑀, 0)) ↾ ω)
7 fvex 6364 . . 3 (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0)) ∈ V
8 eqid 2761 . . 3 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω)
98seqval 13027 . . 3 seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹) = ran (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ V, 𝑤 ∈ V ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨if(𝑀 ∈ ℤ, 𝑀, 0), (𝐹‘if(𝑀 ∈ ℤ, 𝑀, 0))⟩) ↾ ω)
105, 6, 7, 8, 9uzrdgfni 12972 . 2 seqif(𝑀 ∈ ℤ, 𝑀, 0)( + , 𝐹) Fn (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))
113, 10dedth 4284 1 (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2140  Vcvv 3341  ifcif 4231  cop 4328  cmpt 4882  cres 5269   Fn wfn 6045  cfv 6050  (class class class)co 6815  cmpt2 6817  ωcom 7232  reccrdg 7676  0cc0 10149  1c1 10150   + caddc 10152  cz 11590  cuz 11900  seqcseq 13016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-n0 11506  df-z 11591  df-uz 11901  df-seq 13017
This theorem is referenced by:  seqf2  13035  seqfeq2  13039  seqfeq  13041  seqfeq3  13066  ser0f  13069  facnn  13277  fac0  13278  seqshft  14045  prodf1f  14844  efcvgfsum  15036  seq1st  15507  prmrec  15849  gsumpropd2lem  17495  ovolunlem1  23486  ovoliunlem1  23491  volsup  23545  mtest  24378  mtestbdd  24379  pserulm  24396  pserdvlem2  24402  emcllem5  24947  lgamgulm2  24983  lgamcvglem  24987  gamcvg2lem  25006  esumfsup  30463  esumpcvgval  30471  esumcvg  30479  esumcvgsum  30481  esumsup  30482  sseqfv1  30782  sseqfn  30783  sseqfv2  30787  faclimlem1  31958  knoppcnlem8  32818  knoppcnlem11  32821  mblfinlem2  33779  ovoliunnfl  33783  voliunnfl  33785
  Copyright terms: Public domain W3C validator