Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqfeq4 Structured version   Visualization version   GIF version

Theorem seqfeq4 13056
 Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqfeq4.m (𝜑𝑁 ∈ (ℤ𝑀))
seqfeq4.f ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
seqfeq4.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqfeq4.id ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
Assertion
Ref Expression
seqfeq4 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))
Distinct variable groups:   𝑥,𝑦, +   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆,𝑦

Proof of Theorem seqfeq4
StepHypRef Expression
1 fvex 6342 . . 3 (seq𝑀( + , 𝐹)‘𝑁) ∈ V
2 fvi 6397 . . 3 ((seq𝑀( + , 𝐹)‘𝑁) ∈ V → ( I ‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁))
31, 2ax-mp 5 . 2 ( I ‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀( + , 𝐹)‘𝑁)
4 seqfeq4.cl . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
5 seqfeq4.f . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → (𝐹𝑥) ∈ 𝑆)
6 seqfeq4.m . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
7 seqfeq4.id . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
8 ovex 6822 . . . . 5 (𝑥 + 𝑦) ∈ V
9 fvi 6397 . . . . 5 ((𝑥 + 𝑦) ∈ V → ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦))
108, 9ax-mp 5 . . . 4 ( I ‘(𝑥 + 𝑦)) = (𝑥 + 𝑦)
11 vex 3352 . . . . . 6 𝑥 ∈ V
12 fvi 6397 . . . . . 6 (𝑥 ∈ V → ( I ‘𝑥) = 𝑥)
1311, 12ax-mp 5 . . . . 5 ( I ‘𝑥) = 𝑥
14 vex 3352 . . . . . 6 𝑦 ∈ V
15 fvi 6397 . . . . . 6 (𝑦 ∈ V → ( I ‘𝑦) = 𝑦)
1614, 15ax-mp 5 . . . . 5 ( I ‘𝑦) = 𝑦
1713, 16oveq12i 6804 . . . 4 (( I ‘𝑥)𝑄( I ‘𝑦)) = (𝑥𝑄𝑦)
187, 10, 173eqtr4g 2829 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ( I ‘(𝑥 + 𝑦)) = (( I ‘𝑥)𝑄( I ‘𝑦)))
19 fvex 6342 . . . 4 (𝐹𝑥) ∈ V
20 fvi 6397 . . . 4 ((𝐹𝑥) ∈ V → ( I ‘(𝐹𝑥)) = (𝐹𝑥))
2119, 20mp1i 13 . . 3 ((𝜑𝑥 ∈ (𝑀...𝑁)) → ( I ‘(𝐹𝑥)) = (𝐹𝑥))
224, 5, 6, 18, 21seqhomo 13054 . 2 (𝜑 → ( I ‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐹)‘𝑁))
233, 22syl5eqr 2818 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀(𝑄, 𝐹)‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630   ∈ wcel 2144  Vcvv 3349   I cid 5156  ‘cfv 6031  (class class class)co 6792  ℤ≥cuz 11887  ...cfz 12532  seqcseq 13007 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-seq 13008 This theorem is referenced by:  seqfeq3  13057  gsumpropd2lem  17480  gsumzoppg  18550
 Copyright terms: Public domain W3C validator