Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqfeq3 Structured version   Visualization version   GIF version

Theorem seqfeq3 13058
 Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
seqfeq3.m (𝜑𝑀 ∈ ℤ)
seqfeq3.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
seqfeq3.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
seqfeq3.id ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
Assertion
Ref Expression
seqfeq3 (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥, + ,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆,𝑦

Proof of Theorem seqfeq3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 seqfeq3.m . . 3 (𝜑𝑀 ∈ ℤ)
2 seqfn 13020 . . 3 (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
31, 2syl 17 . 2 (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ𝑀))
4 seqfn 13020 . . 3 (𝑀 ∈ ℤ → seq𝑀(𝑄, 𝐹) Fn (ℤ𝑀))
51, 4syl 17 . 2 (𝜑 → seq𝑀(𝑄, 𝐹) Fn (ℤ𝑀))
6 simpr 471 . . 3 ((𝜑𝑎 ∈ (ℤ𝑀)) → 𝑎 ∈ (ℤ𝑀))
7 simpll 750 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (𝑀...𝑎)) → 𝜑)
8 elfzuz 12545 . . . . 5 (𝑥 ∈ (𝑀...𝑎) → 𝑥 ∈ (ℤ𝑀))
98adantl 467 . . . 4 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (𝑀...𝑎)) → 𝑥 ∈ (ℤ𝑀))
10 seqfeq3.f . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
117, 9, 10syl2anc 573 . . 3 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (𝑀...𝑎)) → (𝐹𝑥) ∈ 𝑆)
12 seqfeq3.cl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1312adantlr 694 . . 3 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
14 seqfeq3.id . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
1514adantlr 694 . . 3 (((𝜑𝑎 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) = (𝑥𝑄𝑦))
166, 11, 13, 15seqfeq4 13057 . 2 ((𝜑𝑎 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹)‘𝑎) = (seq𝑀(𝑄, 𝐹)‘𝑎))
173, 5, 16eqfnfvd 6457 1 (𝜑 → seq𝑀( + , 𝐹) = seq𝑀(𝑄, 𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145   Fn wfn 6026  ‘cfv 6031  (class class class)co 6793  ℤcz 11579  ℤ≥cuz 11888  ...cfz 12533  seqcseq 13008 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-seq 13009 This theorem is referenced by:  mulgpropd  17792  esumfsupre  30473
 Copyright terms: Public domain W3C validator