![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqf2 | Structured version Visualization version GIF version |
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
seqcl2.1 | ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) |
seqcl2.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) |
seqf2.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
seqf2.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
seqf2.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) |
Ref | Expression |
---|---|
seqf2 | ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqf2.4 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | seqfn 13020 | . . . 4 ⊢ (𝑀 ∈ ℤ → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀)) |
4 | seqcl2.1 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) | |
5 | 4 | adantr 466 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑀) ∈ 𝐶) |
6 | seqcl2.2 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) | |
7 | 6 | adantlr 694 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) |
8 | simpr 471 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
9 | elfzuz 12545 | . . . . . . 7 ⊢ (𝑥 ∈ ((𝑀 + 1)...𝑘) → 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) | |
10 | seqf2.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) | |
11 | 9, 10 | sylan2 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ((𝑀 + 1)...𝑘)) → (𝐹‘𝑥) ∈ 𝐷) |
12 | 11 | adantlr 694 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ ((𝑀 + 1)...𝑘)) → (𝐹‘𝑥) ∈ 𝐷) |
13 | 5, 7, 8, 12 | seqcl2 13026 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘𝑘) ∈ 𝐶) |
14 | 13 | ralrimiva 3115 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(seq𝑀( + , 𝐹)‘𝑘) ∈ 𝐶) |
15 | ffnfv 6530 | . . 3 ⊢ (seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝐶 ↔ (seq𝑀( + , 𝐹) Fn (ℤ≥‘𝑀) ∧ ∀𝑘 ∈ (ℤ≥‘𝑀)(seq𝑀( + , 𝐹)‘𝑘) ∈ 𝐶)) | |
16 | 3, 14, 15 | sylanbrc 572 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝐶) |
17 | seqf2.3 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
18 | 17 | feq2i 6177 | . 2 ⊢ (seq𝑀( + , 𝐹):𝑍⟶𝐶 ↔ seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝐶) |
19 | 16, 18 | sylibr 224 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 Fn wfn 6026 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 1c1 10139 + caddc 10141 ℤcz 11579 ℤ≥cuz 11888 ...cfz 12533 seqcseq 13008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-seq 13009 |
This theorem is referenced by: seqf 13029 ruclem6 15170 sadcf 15383 smupf 15408 sseqfv2 30796 |
Copyright terms: Public domain | W3C validator |