![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seqeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for the sequence builder operation. (Contributed by Mario Carneiro, 7-Sep-2013.) |
Ref | Expression |
---|---|
seqeqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
seqeq1d | ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqeqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | seqeq1 13018 | . 2 ⊢ (𝐴 = 𝐵 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → seq𝐴( + , 𝐹) = seq𝐵( + , 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 seqcseq 13015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-xp 5272 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-iota 6012 df-fv 6057 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-seq 13016 |
This theorem is referenced by: seqeq123d 13024 seqf1olem2 13055 bcval5 13319 bcn2 13320 seqshft 14044 iserex 14606 isershft 14613 isercoll2 14618 isumsplit 14791 cvgrat 14834 ntrivcvg 14848 ntrivcvgtail 14851 fprodser 14898 eftlub 15058 gsumval2a 17500 gsumccat 17599 mulgnndir 17790 mulgnndirOLD 17791 geolim3 24313 fmul01lt1lem2 40338 stirlinglem7 40818 stirlinglem12 40823 |
Copyright terms: Public domain | W3C validator |