Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqeq1 Structured version   Visualization version   GIF version

Theorem seqeq1 12998
 Description: Equality theorem for the sequence builder operation. (Contributed by Mario Carneiro, 4-Sep-2013.)
Assertion
Ref Expression
seqeq1 (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹))

Proof of Theorem seqeq1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6352 . . . . 5 (𝑀 = 𝑁 → (𝐹𝑀) = (𝐹𝑁))
2 opeq12 4555 . . . . 5 ((𝑀 = 𝑁 ∧ (𝐹𝑀) = (𝐹𝑁)) → ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐹𝑁)⟩)
31, 2mpdan 705 . . . 4 (𝑀 = 𝑁 → ⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐹𝑁)⟩)
4 rdgeq2 7677 . . . 4 (⟨𝑀, (𝐹𝑀)⟩ = ⟨𝑁, (𝐹𝑁)⟩ → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
53, 4syl 17 . . 3 (𝑀 = 𝑁 → rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) = rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩))
65imaeq1d 5623 . 2 (𝑀 = 𝑁 → (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩) “ ω))
7 df-seq 12996 . 2 seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
8 df-seq 12996 . 2 seq𝑁( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑁, (𝐹𝑁)⟩) “ ω)
96, 7, 83eqtr4g 2819 1 (𝑀 = 𝑁 → seq𝑀( + , 𝐹) = seq𝑁( + , 𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1632  Vcvv 3340  ⟨cop 4327   “ cima 5269  ‘cfv 6049  (class class class)co 6813   ↦ cmpt2 6815  ωcom 7230  reccrdg 7674  1c1 10129   + caddc 10131  seqcseq 12995 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-xp 5272  df-cnv 5274  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-iota 6012  df-fv 6057  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-seq 12996 This theorem is referenced by:  seqeq1d  13001  seqfn  13007  seq1  13008  seqp1  13010  seqf1olem2  13035  seqid  13040  seqz  13043  iserex  14586  summolem2  14646  summo  14647  zsum  14648  isumsplit  14771  ntrivcvg  14828  ntrivcvgn0  14829  ntrivcvgtail  14831  ntrivcvgmullem  14832  prodmolem2  14864  prodmo  14865  zprod  14866  fprodntriv  14871  ege2le3  15019  gsumval2a  17480  leibpi  24868  dvradcnv2  39048  binomcxplemnotnn0  39057  stirlinglem12  40805
 Copyright terms: Public domain W3C validator