MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqcoll2 Structured version   Visualization version   GIF version

Theorem seqcoll2 13441
Description: The function 𝐹 contains a sparse set of nonzero values to be summed. The function 𝐺 is an order isomorphism from the set of nonzero values of 𝐹 to a 1-based finite sequence, and 𝐻 collects these nonzero values together. Under these conditions, the sum over the values in 𝐻 yields the same result as the sum over the original set 𝐹. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
seqcoll2.1 ((𝜑𝑘𝑆) → (𝑍 + 𝑘) = 𝑘)
seqcoll2.1b ((𝜑𝑘𝑆) → (𝑘 + 𝑍) = 𝑘)
seqcoll2.c ((𝜑 ∧ (𝑘𝑆𝑛𝑆)) → (𝑘 + 𝑛) ∈ 𝑆)
seqcoll2.a (𝜑𝑍𝑆)
seqcoll2.2 (𝜑𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴))
seqcoll2.3 (𝜑𝐴 ≠ ∅)
seqcoll2.5 (𝜑𝐴 ⊆ (𝑀...𝑁))
seqcoll2.6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
seqcoll2.7 ((𝜑𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴)) → (𝐹𝑘) = 𝑍)
seqcoll2.8 ((𝜑𝑛 ∈ (1...(♯‘𝐴))) → (𝐻𝑛) = (𝐹‘(𝐺𝑛)))
Assertion
Ref Expression
seqcoll2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘𝐴)))
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹,𝑛   𝑘,𝐺,𝑛   𝑛,𝐻   𝑘,𝑀,𝑛   𝜑,𝑘,𝑛   𝑘,𝑁   + ,𝑘,𝑛   𝑆,𝑘,𝑛   𝑘,𝑍
Allowed substitution hints:   𝐻(𝑘)   𝑁(𝑛)   𝑍(𝑛)

Proof of Theorem seqcoll2
StepHypRef Expression
1 seqcoll2.1b . . 3 ((𝜑𝑘𝑆) → (𝑘 + 𝑍) = 𝑘)
2 fzssuz 12575 . . . 4 (𝑀...𝑁) ⊆ (ℤ𝑀)
3 seqcoll2.5 . . . . 5 (𝜑𝐴 ⊆ (𝑀...𝑁))
4 seqcoll2.2 . . . . . . . 8 (𝜑𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴))
5 isof1o 6736 . . . . . . . 8 (𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴) → 𝐺:(1...(♯‘𝐴))–1-1-onto𝐴)
64, 5syl 17 . . . . . . 7 (𝜑𝐺:(1...(♯‘𝐴))–1-1-onto𝐴)
7 f1of 6298 . . . . . . 7 (𝐺:(1...(♯‘𝐴))–1-1-onto𝐴𝐺:(1...(♯‘𝐴))⟶𝐴)
86, 7syl 17 . . . . . 6 (𝜑𝐺:(1...(♯‘𝐴))⟶𝐴)
9 seqcoll2.3 . . . . . . . . . 10 (𝜑𝐴 ≠ ∅)
10 fzfi 12965 . . . . . . . . . . . . 13 (𝑀...𝑁) ∈ Fin
11 ssfi 8345 . . . . . . . . . . . . 13 (((𝑀...𝑁) ∈ Fin ∧ 𝐴 ⊆ (𝑀...𝑁)) → 𝐴 ∈ Fin)
1210, 3, 11sylancr 698 . . . . . . . . . . . 12 (𝜑𝐴 ∈ Fin)
13 hasheq0 13346 . . . . . . . . . . . 12 (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
1412, 13syl 17 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅))
1514necon3bbid 2969 . . . . . . . . . 10 (𝜑 → (¬ (♯‘𝐴) = 0 ↔ 𝐴 ≠ ∅))
169, 15mpbird 247 . . . . . . . . 9 (𝜑 → ¬ (♯‘𝐴) = 0)
17 hashcl 13339 . . . . . . . . . . . 12 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
1812, 17syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘𝐴) ∈ ℕ0)
19 elnn0 11486 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0))
2018, 19sylib 208 . . . . . . . . . 10 (𝜑 → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0))
2120ord 391 . . . . . . . . 9 (𝜑 → (¬ (♯‘𝐴) ∈ ℕ → (♯‘𝐴) = 0))
2216, 21mt3d 140 . . . . . . . 8 (𝜑 → (♯‘𝐴) ∈ ℕ)
23 nnuz 11916 . . . . . . . 8 ℕ = (ℤ‘1)
2422, 23syl6eleq 2849 . . . . . . 7 (𝜑 → (♯‘𝐴) ∈ (ℤ‘1))
25 eluzfz2 12542 . . . . . . 7 ((♯‘𝐴) ∈ (ℤ‘1) → (♯‘𝐴) ∈ (1...(♯‘𝐴)))
2624, 25syl 17 . . . . . 6 (𝜑 → (♯‘𝐴) ∈ (1...(♯‘𝐴)))
278, 26ffvelrnd 6523 . . . . 5 (𝜑 → (𝐺‘(♯‘𝐴)) ∈ 𝐴)
283, 27sseldd 3745 . . . 4 (𝜑 → (𝐺‘(♯‘𝐴)) ∈ (𝑀...𝑁))
292, 28sseldi 3742 . . 3 (𝜑 → (𝐺‘(♯‘𝐴)) ∈ (ℤ𝑀))
30 elfzuz3 12532 . . . 4 ((𝐺‘(♯‘𝐴)) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝐺‘(♯‘𝐴))))
3128, 30syl 17 . . 3 (𝜑𝑁 ∈ (ℤ‘(𝐺‘(♯‘𝐴))))
32 fzss2 12574 . . . . . . 7 (𝑁 ∈ (ℤ‘(𝐺‘(♯‘𝐴))) → (𝑀...(𝐺‘(♯‘𝐴))) ⊆ (𝑀...𝑁))
3331, 32syl 17 . . . . . 6 (𝜑 → (𝑀...(𝐺‘(♯‘𝐴))) ⊆ (𝑀...𝑁))
3433sselda 3744 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) → 𝑘 ∈ (𝑀...𝑁))
35 seqcoll2.6 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ 𝑆)
3634, 35syldan 488 . . . 4 ((𝜑𝑘 ∈ (𝑀...(𝐺‘(♯‘𝐴)))) → (𝐹𝑘) ∈ 𝑆)
37 seqcoll2.c . . . 4 ((𝜑 ∧ (𝑘𝑆𝑛𝑆)) → (𝑘 + 𝑛) ∈ 𝑆)
3829, 36, 37seqcl 13015 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘(♯‘𝐴))) ∈ 𝑆)
39 peano2uz 11934 . . . . . . . 8 ((𝐺‘(♯‘𝐴)) ∈ (ℤ𝑀) → ((𝐺‘(♯‘𝐴)) + 1) ∈ (ℤ𝑀))
4029, 39syl 17 . . . . . . 7 (𝜑 → ((𝐺‘(♯‘𝐴)) + 1) ∈ (ℤ𝑀))
41 fzss1 12573 . . . . . . 7 (((𝐺‘(♯‘𝐴)) + 1) ∈ (ℤ𝑀) → (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ⊆ (𝑀...𝑁))
4240, 41syl 17 . . . . . 6 (𝜑 → (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ⊆ (𝑀...𝑁))
4342sselda 3744 . . . . 5 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
44 eluzelre 11890 . . . . . . . . 9 ((𝐺‘(♯‘𝐴)) ∈ (ℤ𝑀) → (𝐺‘(♯‘𝐴)) ∈ ℝ)
4529, 44syl 17 . . . . . . . 8 (𝜑 → (𝐺‘(♯‘𝐴)) ∈ ℝ)
4645adantr 472 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝐺‘(♯‘𝐴)) ∈ ℝ)
47 peano2re 10401 . . . . . . . 8 ((𝐺‘(♯‘𝐴)) ∈ ℝ → ((𝐺‘(♯‘𝐴)) + 1) ∈ ℝ)
4846, 47syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → ((𝐺‘(♯‘𝐴)) + 1) ∈ ℝ)
49 elfzelz 12535 . . . . . . . . 9 (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) → 𝑘 ∈ ℤ)
5049zred 11674 . . . . . . . 8 (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) → 𝑘 ∈ ℝ)
5150adantl 473 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → 𝑘 ∈ ℝ)
5246ltp1d 11146 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝐺‘(♯‘𝐴)) < ((𝐺‘(♯‘𝐴)) + 1))
53 elfzle1 12537 . . . . . . . 8 (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) → ((𝐺‘(♯‘𝐴)) + 1) ≤ 𝑘)
5453adantl 473 . . . . . . 7 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → ((𝐺‘(♯‘𝐴)) + 1) ≤ 𝑘)
5546, 48, 51, 52, 54ltletrd 10389 . . . . . 6 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝐺‘(♯‘𝐴)) < 𝑘)
566adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝐺:(1...(♯‘𝐴))–1-1-onto𝐴)
57 f1ocnv 6310 . . . . . . . . . . . . 13 (𝐺:(1...(♯‘𝐴))–1-1-onto𝐴𝐺:𝐴1-1-onto→(1...(♯‘𝐴)))
5856, 57syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝐺:𝐴1-1-onto→(1...(♯‘𝐴)))
59 f1of 6298 . . . . . . . . . . . 12 (𝐺:𝐴1-1-onto→(1...(♯‘𝐴)) → 𝐺:𝐴⟶(1...(♯‘𝐴)))
6058, 59syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝐺:𝐴⟶(1...(♯‘𝐴)))
61 simprr 813 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝑘𝐴)
6260, 61ffvelrnd 6523 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺𝑘) ∈ (1...(♯‘𝐴)))
63 elfzle2 12538 . . . . . . . . . 10 ((𝐺𝑘) ∈ (1...(♯‘𝐴)) → (𝐺𝑘) ≤ (♯‘𝐴))
6462, 63syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺𝑘) ≤ (♯‘𝐴))
65 elfzelz 12535 . . . . . . . . . . . 12 ((𝐺𝑘) ∈ (1...(♯‘𝐴)) → (𝐺𝑘) ∈ ℤ)
6662, 65syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺𝑘) ∈ ℤ)
6766zred 11674 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺𝑘) ∈ ℝ)
6818adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (♯‘𝐴) ∈ ℕ0)
6968nn0red 11544 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (♯‘𝐴) ∈ ℝ)
7067, 69lenltd 10375 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ((𝐺𝑘) ≤ (♯‘𝐴) ↔ ¬ (♯‘𝐴) < (𝐺𝑘)))
7164, 70mpbid 222 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ¬ (♯‘𝐴) < (𝐺𝑘))
724adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → 𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴))
7326adantr 472 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (♯‘𝐴) ∈ (1...(♯‘𝐴)))
74 isorel 6739 . . . . . . . . . 10 ((𝐺 Isom < , < ((1...(♯‘𝐴)), 𝐴) ∧ ((♯‘𝐴) ∈ (1...(♯‘𝐴)) ∧ (𝐺𝑘) ∈ (1...(♯‘𝐴)))) → ((♯‘𝐴) < (𝐺𝑘) ↔ (𝐺‘(♯‘𝐴)) < (𝐺‘(𝐺𝑘))))
7572, 73, 62, 74syl12anc 1475 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ((♯‘𝐴) < (𝐺𝑘) ↔ (𝐺‘(♯‘𝐴)) < (𝐺‘(𝐺𝑘))))
76 f1ocnvfv2 6696 . . . . . . . . . . 11 ((𝐺:(1...(♯‘𝐴))–1-1-onto𝐴𝑘𝐴) → (𝐺‘(𝐺𝑘)) = 𝑘)
7756, 61, 76syl2anc 696 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → (𝐺‘(𝐺𝑘)) = 𝑘)
7877breq2d 4816 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ((𝐺‘(♯‘𝐴)) < (𝐺‘(𝐺𝑘)) ↔ (𝐺‘(♯‘𝐴)) < 𝑘))
7975, 78bitrd 268 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ((♯‘𝐴) < (𝐺𝑘) ↔ (𝐺‘(♯‘𝐴)) < 𝑘))
8071, 79mtbid 313 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁) ∧ 𝑘𝐴)) → ¬ (𝐺‘(♯‘𝐴)) < 𝑘)
8180expr 644 . . . . . 6 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝑘𝐴 → ¬ (𝐺‘(♯‘𝐴)) < 𝑘))
8255, 81mt2d 131 . . . . 5 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → ¬ 𝑘𝐴)
8343, 82eldifd 3726 . . . 4 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → 𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴))
84 seqcoll2.7 . . . 4 ((𝜑𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴)) → (𝐹𝑘) = 𝑍)
8583, 84syldan 488 . . 3 ((𝜑𝑘 ∈ (((𝐺‘(♯‘𝐴)) + 1)...𝑁)) → (𝐹𝑘) = 𝑍)
861, 29, 31, 38, 85seqid2 13041 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘(♯‘𝐴))) = (seq𝑀( + , 𝐹)‘𝑁))
87 seqcoll2.1 . . 3 ((𝜑𝑘𝑆) → (𝑍 + 𝑘) = 𝑘)
88 seqcoll2.a . . 3 (𝜑𝑍𝑆)
893, 2syl6ss 3756 . . 3 (𝜑𝐴 ⊆ (ℤ𝑀))
9033ssdifd 3889 . . . . 5 (𝜑 → ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴) ⊆ ((𝑀...𝑁) ∖ 𝐴))
9190sselda 3744 . . . 4 ((𝜑𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → 𝑘 ∈ ((𝑀...𝑁) ∖ 𝐴))
9291, 84syldan 488 . . 3 ((𝜑𝑘 ∈ ((𝑀...(𝐺‘(♯‘𝐴))) ∖ 𝐴)) → (𝐹𝑘) = 𝑍)
93 seqcoll2.8 . . 3 ((𝜑𝑛 ∈ (1...(♯‘𝐴))) → (𝐻𝑛) = (𝐹‘(𝐺𝑛)))
9487, 1, 37, 88, 4, 26, 89, 36, 92, 93seqcoll 13440 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘(𝐺‘(♯‘𝐴))) = (seq1( + , 𝐻)‘(♯‘𝐴)))
9586, 94eqtr3d 2796 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq1( + , 𝐻)‘(♯‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139  wne 2932  cdif 3712  wss 3715  c0 4058   class class class wbr 4804  ccnv 5265  wf 6045  1-1-ontowf1o 6048  cfv 6049   Isom wiso 6050  (class class class)co 6813  Fincfn 8121  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   < clt 10266  cle 10267  cn 11212  0cn0 11484  cz 11569  cuz 11879  ...cfz 12519  seqcseq 12995  chash 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-seq 12996  df-hash 13312
This theorem is referenced by:  isercolllem3  14596  gsumval3  18508
  Copyright terms: Public domain W3C validator