MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seeq1 Structured version   Visualization version   GIF version

Theorem seeq1 5226
Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
seeq1 (𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))

Proof of Theorem seeq1
StepHypRef Expression
1 eqimss2 3787 . . 3 (𝑅 = 𝑆𝑆𝑅)
2 sess1 5222 . . 3 (𝑆𝑅 → (𝑅 Se 𝐴𝑆 Se 𝐴))
31, 2syl 17 . 2 (𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))
4 eqimss 3786 . . 3 (𝑅 = 𝑆𝑅𝑆)
5 sess1 5222 . . 3 (𝑅𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))
64, 5syl 17 . 2 (𝑅 = 𝑆 → (𝑆 Se 𝐴𝑅 Se 𝐴))
73, 6impbid 202 1 (𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1620  wss 3703   Se wse 5211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ral 3043  df-rab 3047  df-v 3330  df-in 3710  df-ss 3717  df-br 4793  df-se 5214
This theorem is referenced by:  oieq1  8570
  Copyright terms: Public domain W3C validator