Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectcan Structured version   Visualization version   GIF version

Theorem sectcan 16622
 Description: If 𝐺 is a section of 𝐹 and 𝐹 is a section of 𝐻, then 𝐺 = 𝐻. Proposition 3.10 of [Adamek] p. 28. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
sectcan.b 𝐵 = (Base‘𝐶)
sectcan.s 𝑆 = (Sect‘𝐶)
sectcan.c (𝜑𝐶 ∈ Cat)
sectcan.x (𝜑𝑋𝐵)
sectcan.y (𝜑𝑌𝐵)
sectcan.1 (𝜑𝐺(𝑋𝑆𝑌)𝐹)
sectcan.2 (𝜑𝐹(𝑌𝑆𝑋)𝐻)
Assertion
Ref Expression
sectcan (𝜑𝐺 = 𝐻)

Proof of Theorem sectcan
StepHypRef Expression
1 sectcan.b . . . 4 𝐵 = (Base‘𝐶)
2 eqid 2771 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2771 . . . 4 (comp‘𝐶) = (comp‘𝐶)
4 sectcan.c . . . 4 (𝜑𝐶 ∈ Cat)
5 sectcan.x . . . 4 (𝜑𝑋𝐵)
6 sectcan.y . . . 4 (𝜑𝑌𝐵)
7 sectcan.1 . . . . . 6 (𝜑𝐺(𝑋𝑆𝑌)𝐹)
8 eqid 2771 . . . . . . 7 (Id‘𝐶) = (Id‘𝐶)
9 sectcan.s . . . . . . 7 𝑆 = (Sect‘𝐶)
101, 2, 3, 8, 9, 4, 5, 6issect 16620 . . . . . 6 (𝜑 → (𝐺(𝑋𝑆𝑌)𝐹 ↔ (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐹(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋))))
117, 10mpbid 222 . . . . 5 (𝜑 → (𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ 𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ (𝐹(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋)))
1211simp1d 1136 . . . 4 (𝜑𝐺 ∈ (𝑋(Hom ‘𝐶)𝑌))
13 sectcan.2 . . . . . 6 (𝜑𝐹(𝑌𝑆𝑋)𝐻)
141, 2, 3, 8, 9, 4, 6, 5issect 16620 . . . . . 6 (𝜑 → (𝐹(𝑌𝑆𝑋)𝐻 ↔ (𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐻(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌))))
1513, 14mpbid 222 . . . . 5 (𝜑 → (𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋) ∧ 𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ (𝐻(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌)))
1615simp1d 1136 . . . 4 (𝜑𝐹 ∈ (𝑌(Hom ‘𝐶)𝑋))
1715simp2d 1137 . . . 4 (𝜑𝐻 ∈ (𝑋(Hom ‘𝐶)𝑌))
181, 2, 3, 4, 5, 6, 5, 12, 16, 6, 17catass 16554 . . 3 (𝜑 → ((𝐻(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐺) = (𝐻(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐹(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐺)))
1915simp3d 1138 . . . 4 (𝜑 → (𝐻(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹) = ((Id‘𝐶)‘𝑌))
2019oveq1d 6808 . . 3 (𝜑 → ((𝐻(⟨𝑌, 𝑋⟩(comp‘𝐶)𝑌)𝐹)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐺) = (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐺))
2111simp3d 1138 . . . 4 (𝜑 → (𝐹(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐺) = ((Id‘𝐶)‘𝑋))
2221oveq2d 6809 . . 3 (𝜑 → (𝐻(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)(𝐹(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝐺)) = (𝐻(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)))
2318, 20, 223eqtr3d 2813 . 2 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐺) = (𝐻(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)))
241, 2, 8, 4, 5, 3, 6, 12catlid 16551 . 2 (𝜑 → (((Id‘𝐶)‘𝑌)(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑌)𝐺) = 𝐺)
251, 2, 8, 4, 5, 3, 6, 17catrid 16552 . 2 (𝜑 → (𝐻(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = 𝐻)
2623, 24, 253eqtr3d 2813 1 (𝜑𝐺 = 𝐻)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145  ⟨cop 4322   class class class wbr 4786  ‘cfv 6031  (class class class)co 6793  Basecbs 16064  Hom chom 16160  compcco 16161  Catccat 16532  Idccid 16533  Sectcsect 16611 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-cat 16536  df-cid 16537  df-sect 16614 This theorem is referenced by:  invfun  16631  inveq  16641
 Copyright terms: Public domain W3C validator