![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdomn2lp | Structured version Visualization version GIF version |
Description: Strict dominance has no 2-cycle loops. (Contributed by NM, 6-May-2008.) |
Ref | Expression |
---|---|
sdomn2lp | ⊢ ¬ (𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomirr 8138 | . 2 ⊢ ¬ 𝐴 ≺ 𝐴 | |
2 | sdomtr 8139 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) → 𝐴 ≺ 𝐴) | |
3 | 1, 2 | mto 188 | 1 ⊢ ¬ (𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 383 class class class wbr 4685 ≺ csdm 7996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |