MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomirr Structured version   Visualization version   GIF version

Theorem sdomirr 8138
Description: Strict dominance is irreflexive. Theorem 21(i) of [Suppes] p. 97. (Contributed by NM, 4-Jun-1998.)
Assertion
Ref Expression
sdomirr ¬ 𝐴𝐴

Proof of Theorem sdomirr
StepHypRef Expression
1 sdomnen 8026 . . 3 (𝐴𝐴 → ¬ 𝐴𝐴)
2 enrefg 8029 . . 3 (𝐴 ∈ V → 𝐴𝐴)
31, 2nsyl3 133 . 2 (𝐴 ∈ V → ¬ 𝐴𝐴)
4 relsdom 8004 . . . 4 Rel ≺
54brrelexi 5192 . . 3 (𝐴𝐴𝐴 ∈ V)
65con3i 150 . 2 𝐴 ∈ V → ¬ 𝐴𝐴)
73, 6pm2.61i 176 1 ¬ 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2030  Vcvv 3231   class class class wbr 4685  cen 7994  csdm 7996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-en 7998  df-dom 7999  df-sdom 8000
This theorem is referenced by:  sdomn2lp  8140  2pwuninel  8156  2pwne  8157  r111  8676  alephval2  9432  alephom  9445  csdfil  21745
  Copyright terms: Public domain W3C validator