![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdomdif | Structured version Visualization version GIF version |
Description: The difference of a set from a smaller set cannot be empty. (Contributed by Mario Carneiro, 5-Feb-2013.) |
Ref | Expression |
---|---|
sdomdif | ⊢ (𝐴 ≺ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relsdom 8116 | . . . . . 6 ⊢ Rel ≺ | |
2 | 1 | brrelexi 5298 | . . . . 5 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ∈ V) |
3 | ssdif0 4089 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∖ 𝐴) = ∅) | |
4 | ssdomg 8155 | . . . . . . 7 ⊢ (𝐴 ∈ V → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
5 | domnsym 8242 | . . . . . . 7 ⊢ (𝐵 ≼ 𝐴 → ¬ 𝐴 ≺ 𝐵) | |
6 | 4, 5 | syl6 35 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐵 ⊆ 𝐴 → ¬ 𝐴 ≺ 𝐵)) |
7 | 3, 6 | syl5bir 233 | . . . . 5 ⊢ (𝐴 ∈ V → ((𝐵 ∖ 𝐴) = ∅ → ¬ 𝐴 ≺ 𝐵)) |
8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝐴 ≺ 𝐵 → ((𝐵 ∖ 𝐴) = ∅ → ¬ 𝐴 ≺ 𝐵)) |
9 | 8 | con2d 131 | . . 3 ⊢ (𝐴 ≺ 𝐵 → (𝐴 ≺ 𝐵 → ¬ (𝐵 ∖ 𝐴) = ∅)) |
10 | 9 | pm2.43i 52 | . 2 ⊢ (𝐴 ≺ 𝐵 → ¬ (𝐵 ∖ 𝐴) = ∅) |
11 | 10 | neqned 2950 | 1 ⊢ (𝐴 ≺ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 Vcvv 3351 ∖ cdif 3720 ⊆ wss 3723 ∅c0 4063 class class class wbr 4786 ≼ cdom 8107 ≺ csdm 8108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 |
This theorem is referenced by: domtriomlem 9466 konigthlem 9592 odcau 18226 |
Copyright terms: Public domain | W3C validator |