![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scottexf | Structured version Visualization version GIF version |
Description: A version of scottex 8924 with non-free variables instead of distinct variables. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
Ref | Expression |
---|---|
scottexf.1 | ⊢ Ⅎ𝑦𝐴 |
scottexf.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
scottexf | ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scottexf.1 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
2 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑧𝐴 | |
3 | nfv 1993 | . . . . 5 ⊢ Ⅎ𝑧(rank‘𝑥) ⊆ (rank‘𝑦) | |
4 | nfv 1993 | . . . . 5 ⊢ Ⅎ𝑦(rank‘𝑥) ⊆ (rank‘𝑧) | |
5 | fveq2 6354 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧)) | |
6 | 5 | sseq2d 3775 | . . . . 5 ⊢ (𝑦 = 𝑧 → ((rank‘𝑥) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑧))) |
7 | 1, 2, 3, 4, 6 | cbvralf 3305 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)) |
8 | 7 | rabbii 3326 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)} |
9 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑤𝐴 | |
10 | scottexf.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
11 | nfv 1993 | . . . . 5 ⊢ Ⅎ𝑥(rank‘𝑤) ⊆ (rank‘𝑧) | |
12 | 10, 11 | nfral 3084 | . . . 4 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) |
13 | nfv 1993 | . . . 4 ⊢ Ⅎ𝑤∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧) | |
14 | fveq2 6354 | . . . . . 6 ⊢ (𝑤 = 𝑥 → (rank‘𝑤) = (rank‘𝑥)) | |
15 | 14 | sseq1d 3774 | . . . . 5 ⊢ (𝑤 = 𝑥 → ((rank‘𝑤) ⊆ (rank‘𝑧) ↔ (rank‘𝑥) ⊆ (rank‘𝑧))) |
16 | 15 | ralbidv 3125 | . . . 4 ⊢ (𝑤 = 𝑥 → (∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧) ↔ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧))) |
17 | 9, 10, 12, 13, 16 | cbvrab 3339 | . . 3 ⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} = {𝑥 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑧)} |
18 | 8, 17 | eqtr4i 2786 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} |
19 | scottex 8924 | . 2 ⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑧 ∈ 𝐴 (rank‘𝑤) ⊆ (rank‘𝑧)} ∈ V | |
20 | 18, 19 | eqeltri 2836 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2140 Ⅎwnfc 2890 ∀wral 3051 {crab 3055 Vcvv 3341 ⊆ wss 3716 ‘cfv 6050 rankcrnk 8802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-reg 8665 ax-inf2 8714 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-om 7233 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-r1 8803 df-rank 8804 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |