MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scott0s Structured version   Visualization version   GIF version

Theorem scott0s 8789
Description: Theorem scheme version of scott0 8787. The collection of all 𝑥 of minimum rank such that 𝜑(𝑥) is true, is not empty iff there is an 𝑥 such that 𝜑(𝑥) holds. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
scott0s (∃𝑥𝜑 ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem scott0s
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 abn0 3987 . 2 ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥𝜑)
2 scott0 8787 . . . 4 ({𝑥𝜑} = ∅ ↔ {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = ∅)
3 nfcv 2793 . . . . . . 7 𝑧{𝑥𝜑}
4 nfab1 2795 . . . . . . 7 𝑥{𝑥𝜑}
5 nfv 1883 . . . . . . . 8 𝑥(rank‘𝑧) ⊆ (rank‘𝑦)
64, 5nfral 2974 . . . . . . 7 𝑥𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)
7 nfv 1883 . . . . . . 7 𝑧𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)
8 fveq2 6229 . . . . . . . . 9 (𝑧 = 𝑥 → (rank‘𝑧) = (rank‘𝑥))
98sseq1d 3665 . . . . . . . 8 (𝑧 = 𝑥 → ((rank‘𝑧) ⊆ (rank‘𝑦) ↔ (rank‘𝑥) ⊆ (rank‘𝑦)))
109ralbidv 3015 . . . . . . 7 (𝑧 = 𝑥 → (∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦) ↔ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)))
113, 4, 6, 7, 10cbvrab 3229 . . . . . 6 {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = {𝑥 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)}
12 df-rab 2950 . . . . . 6 {𝑥 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝑥 ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))}
13 abid 2639 . . . . . . . 8 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
14 df-ral 2946 . . . . . . . . 9 (∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦)))
15 df-sbc 3469 . . . . . . . . . . 11 ([𝑦 / 𝑥]𝜑𝑦 ∈ {𝑥𝜑})
1615imbi1i 338 . . . . . . . . . 10 (([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝑦 ∈ {𝑥𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦)))
1716albii 1787 . . . . . . . . 9 (∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → (rank‘𝑥) ⊆ (rank‘𝑦)))
1814, 17bitr4i 267 . . . . . . . 8 (∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦) ↔ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))
1913, 18anbi12i 733 . . . . . . 7 ((𝑥 ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦)) ↔ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦))))
2019abbii 2768 . . . . . 6 {𝑥 ∣ (𝑥 ∈ {𝑥𝜑} ∧ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑥) ⊆ (rank‘𝑦))} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
2111, 12, 203eqtri 2677 . . . . 5 {𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
2221eqeq1i 2656 . . . 4 ({𝑧 ∈ {𝑥𝜑} ∣ ∀𝑦 ∈ {𝑥𝜑} (rank‘𝑧) ⊆ (rank‘𝑦)} = ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = ∅)
232, 22bitri 264 . . 3 ({𝑥𝜑} = ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} = ∅)
2423necon3bii 2875 . 2 ({𝑥𝜑} ≠ ∅ ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
251, 24bitr3i 266 1 (∃𝑥𝜑 ↔ {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1521   = wceq 1523  wex 1744  wcel 2030  {cab 2637  wne 2823  wral 2941  {crab 2945  [wsbc 3468  wss 3607  c0 3948  cfv 5926  rankcrnk 8664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-r1 8665  df-rank 8666
This theorem is referenced by:  hta  8798
  Copyright terms: Public domain W3C validator