Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sconnpht Structured version   Visualization version   GIF version

Theorem sconnpht 31337
Description: A closed path in a simply connected space is contractible to a point. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
sconnpht ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))

Proof of Theorem sconnpht
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 issconn 31334 . . 3 (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}))))
2 fveq1 6228 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0))
3 fveq1 6228 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1))
42, 3eqeq12d 2666 . . . . 5 (𝑓 = 𝐹 → ((𝑓‘0) = (𝑓‘1) ↔ (𝐹‘0) = (𝐹‘1)))
5 id 22 . . . . . 6 (𝑓 = 𝐹𝑓 = 𝐹)
62sneqd 4222 . . . . . . 7 (𝑓 = 𝐹 → {(𝑓‘0)} = {(𝐹‘0)})
76xpeq2d 5173 . . . . . 6 (𝑓 = 𝐹 → ((0[,]1) × {(𝑓‘0)}) = ((0[,]1) × {(𝐹‘0)}))
85, 7breq12d 4698 . . . . 5 (𝑓 = 𝐹 → (𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)}) ↔ 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)})))
94, 8imbi12d 333 . . . 4 (𝑓 = 𝐹 → (((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})) ↔ ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))))
109rspccv 3337 . . 3 (∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝐽)((0[,]1) × {(𝑓‘0)})) → (𝐹 ∈ (II Cn 𝐽) → ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))))
111, 10simplbiim 659 . 2 (𝐽 ∈ SConn → (𝐹 ∈ (II Cn 𝐽) → ((𝐹‘0) = (𝐹‘1) → 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))))
12113imp 1275 1 ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph𝐽)((0[,]1) × {(𝐹‘0)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1054   = wceq 1523  wcel 2030  wral 2941  {csn 4210   class class class wbr 4685   × cxp 5141  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975  [,]cicc 12216   Cn ccn 21076  IIcii 22725  phcphtpc 22815  PConncpconn 31327  SConncsconn 31328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-xp 5149  df-iota 5889  df-fv 5934  df-ov 6693  df-sconn 31330
This theorem is referenced by:  sconnpht2  31346  sconnpi1  31347  txsconn  31349
  Copyright terms: Public domain W3C validator