![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scmfsupp | Structured version Visualization version GIF version |
Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
scmsuppfi.s | ⊢ 𝑆 = (Scalar‘𝑀) |
scmsuppfi.r | ⊢ 𝑅 = (Base‘𝑆) |
Ref | Expression |
---|---|
scmfsupp | ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) finSupp (0g‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funmpt 6068 | . . 3 ⊢ Fun (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) | |
2 | 1 | a1i 11 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → Fun (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣))) |
3 | id 22 | . . . 4 ⊢ (𝐴 finSupp (0g‘𝑆) → 𝐴 finSupp (0g‘𝑆)) | |
4 | 3 | fsuppimpd 8442 | . . 3 ⊢ (𝐴 finSupp (0g‘𝑆) → (𝐴 supp (0g‘𝑆)) ∈ Fin) |
5 | scmsuppfi.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑀) | |
6 | scmsuppfi.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
7 | 5, 6 | scmsuppfi 42683 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ (𝐴 supp (0g‘𝑆)) ∈ Fin) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin) |
8 | 4, 7 | syl3an3 1169 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin) |
9 | mptexg 6631 | . . . . 5 ⊢ (𝑉 ∈ 𝒫 (Base‘𝑀) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∈ V) | |
10 | 9 | adantl 467 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∈ V) |
11 | 10 | 3ad2ant1 1127 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∈ V) |
12 | fvex 6344 | . . 3 ⊢ (0g‘𝑀) ∈ V | |
13 | isfsupp 8439 | . . 3 ⊢ (((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∈ V ∧ (0g‘𝑀) ∈ V) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) finSupp (0g‘𝑀) ↔ (Fun (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∧ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin))) | |
14 | 11, 12, 13 | sylancl 574 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) finSupp (0g‘𝑀) ↔ (Fun (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) ∧ ((𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) supp (0g‘𝑀)) ∈ Fin))) |
15 | 2, 8, 14 | mpbir2and 692 | 1 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ 𝐴 finSupp (0g‘𝑆)) → (𝑣 ∈ 𝑉 ↦ ((𝐴‘𝑣)( ·𝑠 ‘𝑀)𝑣)) finSupp (0g‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 Vcvv 3351 𝒫 cpw 4298 class class class wbr 4787 ↦ cmpt 4864 Fun wfun 6024 ‘cfv 6030 (class class class)co 6796 supp csupp 7450 ↑𝑚 cmap 8013 Fincfn 8113 finSupp cfsupp 8435 Basecbs 16064 Scalarcsca 16152 ·𝑠 cvsca 16153 0gc0g 16308 LModclmod 19073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-er 7900 df-map 8015 df-en 8114 df-fin 8117 df-fsupp 8436 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-ring 18757 df-lmod 19075 |
This theorem is referenced by: gsumlsscl 42689 lincfsuppcl 42727 linccl 42728 lincdifsn 42738 lincsum 42743 lincscm 42744 lincresunit3lem2 42794 lincresunit3 42795 |
Copyright terms: Public domain | W3C validator |