![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatscmide | Structured version Visualization version GIF version |
Description: An entry of a scalar matrix expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019.) |
Ref | Expression |
---|---|
scmatscmide.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatscmide.b | ⊢ 𝐵 = (Base‘𝑅) |
scmatscmide.0 | ⊢ 0 = (0g‘𝑅) |
scmatscmide.1 | ⊢ 1 = (1r‘𝐴) |
scmatscmide.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
Ref | Expression |
---|---|
scmatscmide | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐶 ∗ 1 )𝐽) = if(𝐼 = 𝐽, 𝐶, 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1228 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
2 | simp3 1131 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) | |
3 | scmatscmide.a | . . . . . . . 8 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
4 | 3 | matring 20465 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
5 | eqid 2770 | . . . . . . . 8 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
6 | scmatscmide.1 | . . . . . . . 8 ⊢ 1 = (1r‘𝐴) | |
7 | 5, 6 | ringidcl 18775 | . . . . . . 7 ⊢ (𝐴 ∈ Ring → 1 ∈ (Base‘𝐴)) |
8 | 4, 7 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝐴)) |
9 | 8 | 3adant3 1125 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → 1 ∈ (Base‘𝐴)) |
10 | 2, 9 | jca 495 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶 ∈ 𝐵 ∧ 1 ∈ (Base‘𝐴))) |
11 | 10 | adantr 466 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐶 ∈ 𝐵 ∧ 1 ∈ (Base‘𝐴))) |
12 | simpr 471 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) | |
13 | scmatscmide.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
14 | scmatscmide.m | . . . 4 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
15 | eqid 2770 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
16 | 3, 5, 13, 14, 15 | matvscacell 20458 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐵 ∧ 1 ∈ (Base‘𝐴)) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐶 ∗ 1 )𝐽) = (𝐶(.r‘𝑅)(𝐼 1 𝐽))) |
17 | 1, 11, 12, 16 | syl3anc 1475 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐶 ∗ 1 )𝐽) = (𝐶(.r‘𝑅)(𝐼 1 𝐽))) |
18 | eqid 2770 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
19 | scmatscmide.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
20 | simpl1 1226 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑁 ∈ Fin) | |
21 | simprl 746 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) | |
22 | simprr 748 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐽 ∈ 𝑁) | |
23 | 3, 18, 19, 20, 1, 21, 22, 6 | mat1ov 20471 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 1 𝐽) = if(𝐼 = 𝐽, (1r‘𝑅), 0 )) |
24 | 23 | oveq2d 6808 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐶(.r‘𝑅)(𝐼 1 𝐽)) = (𝐶(.r‘𝑅)if(𝐼 = 𝐽, (1r‘𝑅), 0 ))) |
25 | ovif2 6884 | . . . 4 ⊢ (𝐶(.r‘𝑅)if(𝐼 = 𝐽, (1r‘𝑅), 0 )) = if(𝐼 = 𝐽, (𝐶(.r‘𝑅)(1r‘𝑅)), (𝐶(.r‘𝑅) 0 )) | |
26 | 13, 15, 18 | ringridm 18779 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶(.r‘𝑅)(1r‘𝑅)) = 𝐶) |
27 | 26 | 3adant1 1123 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶(.r‘𝑅)(1r‘𝑅)) = 𝐶) |
28 | 13, 15, 19 | ringrz 18795 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶(.r‘𝑅) 0 ) = 0 ) |
29 | 28 | 3adant1 1123 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶(.r‘𝑅) 0 ) = 0 ) |
30 | 27, 29 | ifeq12d 4243 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → if(𝐼 = 𝐽, (𝐶(.r‘𝑅)(1r‘𝑅)), (𝐶(.r‘𝑅) 0 )) = if(𝐼 = 𝐽, 𝐶, 0 )) |
31 | 25, 30 | syl5eq 2816 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶(.r‘𝑅)if(𝐼 = 𝐽, (1r‘𝑅), 0 )) = if(𝐼 = 𝐽, 𝐶, 0 )) |
32 | 31 | adantr 466 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐶(.r‘𝑅)if(𝐼 = 𝐽, (1r‘𝑅), 0 )) = if(𝐼 = 𝐽, 𝐶, 0 )) |
33 | 17, 24, 32 | 3eqtrd 2808 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐶 ∗ 1 )𝐽) = if(𝐼 = 𝐽, 𝐶, 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ifcif 4223 ‘cfv 6031 (class class class)co 6792 Fincfn 8108 Basecbs 16063 .rcmulr 16149 ·𝑠 cvsca 16152 0gc0g 16307 1rcur 18708 Ringcrg 18754 Mat cmat 20429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-ot 4323 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-sup 8503 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-fz 12533 df-fzo 12673 df-seq 13008 df-hash 13321 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-hom 16173 df-cco 16174 df-0g 16309 df-gsum 16310 df-prds 16315 df-pws 16317 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-mhm 17542 df-submnd 17543 df-grp 17632 df-minusg 17633 df-sbg 17634 df-mulg 17748 df-subg 17798 df-ghm 17865 df-cntz 17956 df-cmn 18401 df-abl 18402 df-mgp 18697 df-ur 18709 df-ring 18756 df-subrg 18987 df-lmod 19074 df-lss 19142 df-sra 19386 df-rgmod 19387 df-dsmm 20292 df-frlm 20307 df-mamu 20406 df-mat 20430 |
This theorem is referenced by: scmatscmiddistr 20531 scmate 20533 scmatmats 20534 scmatf1 20554 pmatcollpwscmatlem1 20813 pmatcollpwscmatlem2 20814 |
Copyright terms: Public domain | W3C validator |