MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatscmiddistr Structured version   Visualization version   GIF version

Theorem scmatscmiddistr 20362
Description: Distributive law for scalar and ring multiplication for scalar matrices expressed as multiplications of a scalar with the identity matrix. (Contributed by AV, 19-Dec-2019.)
Hypotheses
Ref Expression
scmatscmide.a 𝐴 = (𝑁 Mat 𝑅)
scmatscmide.b 𝐵 = (Base‘𝑅)
scmatscmide.0 0 = (0g𝑅)
scmatscmide.1 1 = (1r𝐴)
scmatscmide.m = ( ·𝑠𝐴)
scmatscmiddistr.t · = (.r𝑅)
scmatscmiddistr.m × = (.r𝐴)
Assertion
Ref Expression
scmatscmiddistr (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) × (𝑇 1 )) = ((𝑆 · 𝑇) 1 ))

Proof of Theorem scmatscmiddistr
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 809 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑆𝐵)
2 scmatscmide.1 . . . . . . . 8 1 = (1r𝐴)
3 scmatscmide.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
4 eqid 2651 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
5 scmatscmide.0 . . . . . . . . 9 0 = (0g𝑅)
6 eqid 2651 . . . . . . . . 9 (𝑁 DMat 𝑅) = (𝑁 DMat 𝑅)
73, 4, 5, 6dmatid 20349 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ (𝑁 DMat 𝑅))
82, 7syl5eqel 2734 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (𝑁 DMat 𝑅))
98adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 1 ∈ (𝑁 DMat 𝑅))
101, 9jca 553 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆𝐵1 ∈ (𝑁 DMat 𝑅)))
11 scmatscmide.b . . . . . 6 𝐵 = (Base‘𝑅)
12 scmatscmide.m . . . . . 6 = ( ·𝑠𝐴)
1311, 3, 4, 12, 6dmatscmcl 20357 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵1 ∈ (𝑁 DMat 𝑅))) → (𝑆 1 ) ∈ (𝑁 DMat 𝑅))
1410, 13syldan 486 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆 1 ) ∈ (𝑁 DMat 𝑅))
15 simprr 811 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑇𝐵)
1615, 9jca 553 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑇𝐵1 ∈ (𝑁 DMat 𝑅)))
1711, 3, 4, 12, 6dmatscmcl 20357 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑇𝐵1 ∈ (𝑁 DMat 𝑅))) → (𝑇 1 ) ∈ (𝑁 DMat 𝑅))
1816, 17syldan 486 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑇 1 ) ∈ (𝑁 DMat 𝑅))
1914, 18jca 553 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) ∈ (𝑁 DMat 𝑅) ∧ (𝑇 1 ) ∈ (𝑁 DMat 𝑅)))
20 scmatscmiddistr.m . . . . 5 × = (.r𝐴)
2120oveqi 6703 . . . 4 ((𝑆 1 ) × (𝑇 1 )) = ((𝑆 1 )(.r𝐴)(𝑇 1 ))
223, 4, 5, 6dmatmul 20351 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑆 1 ) ∈ (𝑁 DMat 𝑅) ∧ (𝑇 1 ) ∈ (𝑁 DMat 𝑅))) → ((𝑆 1 )(.r𝐴)(𝑇 1 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )))
2321, 22syl5eq 2697 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑆 1 ) ∈ (𝑁 DMat 𝑅) ∧ (𝑇 1 ) ∈ (𝑁 DMat 𝑅))) → ((𝑆 1 ) × (𝑇 1 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )))
2419, 23syldan 486 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) × (𝑇 1 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )))
25 simpll 805 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑁 ∈ Fin)
26 simplr 807 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑅 ∈ Ring)
2725, 26, 13jca 1261 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆𝐵))
28273ad2ant1 1102 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆𝐵))
29 3simpc 1080 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
303, 11, 5, 2, 12scmatscmide 20361 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑆 1 )𝑗) = if(𝑖 = 𝑗, 𝑆, 0 ))
3128, 29, 30syl2anc 694 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑆 1 )𝑗) = if(𝑖 = 𝑗, 𝑆, 0 ))
3225, 26, 153jca 1261 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑇𝐵))
33323ad2ant1 1102 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑇𝐵))
343, 11, 5, 2, 12scmatscmide 20361 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑇𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇 1 )𝑗) = if(𝑖 = 𝑗, 𝑇, 0 ))
3533, 29, 34syl2anc 694 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑇 1 )𝑗) = if(𝑖 = 𝑗, 𝑇, 0 ))
3631, 35oveq12d 6708 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)) = (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )))
3736ifeq1d 4137 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 ) = if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 ))
3837mpt2eq3dva 6761 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 )))
39 iftrue 4125 . . . . . . . 8 (𝑖 = 𝑗 → if(𝑖 = 𝑗, 𝑆, 0 ) = 𝑆)
40 iftrue 4125 . . . . . . . 8 (𝑖 = 𝑗 → if(𝑖 = 𝑗, 𝑇, 0 ) = 𝑇)
4139, 40oveq12d 6708 . . . . . . 7 (𝑖 = 𝑗 → (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )) = (𝑆(.r𝑅)𝑇))
4241adantl 481 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑖 = 𝑗) → (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )) = (𝑆(.r𝑅)𝑇))
4342ifeq1da 4149 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 ) = if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))
4443mpt2eq3dva 6761 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )))
45 eqidd 2652 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )))
46 eqeq12 2664 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖 = 𝑗𝑥 = 𝑦))
47 scmatscmiddistr.t . . . . . . . . . . . . 13 · = (.r𝑅)
4847eqcomi 2660 . . . . . . . . . . . 12 (.r𝑅) = ·
4948oveqi 6703 . . . . . . . . . . 11 (𝑆(.r𝑅)𝑇) = (𝑆 · 𝑇)
5049a1i 11 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑆(.r𝑅)𝑇) = (𝑆 · 𝑇))
5146, 50ifbieq1d 4142 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
5251adantl 481 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) ∧ (𝑖 = 𝑥𝑗 = 𝑦)) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
53 simprl 809 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
54 simprr 811 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
55 ovex 6718 . . . . . . . . . 10 (𝑆 · 𝑇) ∈ V
56 fvex 6239 . . . . . . . . . . 11 (0g𝑅) ∈ V
575, 56eqeltri 2726 . . . . . . . . . 10 0 ∈ V
5855, 57ifex 4189 . . . . . . . . 9 if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ) ∈ V
5958a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ) ∈ V)
6045, 52, 53, 54, 59ovmpt2d 6830 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
6126, 1, 153jca 1261 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑅 ∈ Ring ∧ 𝑆𝐵𝑇𝐵))
6211, 47ringcl 18607 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆𝐵𝑇𝐵) → (𝑆 · 𝑇) ∈ 𝐵)
6361, 62syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆 · 𝑇) ∈ 𝐵)
6425, 26, 633jca 1261 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑆 · 𝑇) ∈ 𝐵))
653, 11, 5, 2, 12scmatscmide 20361 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑆 · 𝑇) ∈ 𝐵) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥((𝑆 · 𝑇) 1 )𝑦) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
6664, 65sylan 487 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥((𝑆 · 𝑇) 1 )𝑦) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
6760, 66eqtr4d 2688 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦))
6867ralrimivva 3000 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦))
69 eqid 2651 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
7011, 69ringcl 18607 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆𝐵𝑇𝐵) → (𝑆(.r𝑅)𝑇) ∈ 𝐵)
7161, 70syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆(.r𝑅)𝑇) ∈ 𝐵)
7211, 5ring0cl 18615 . . . . . . . . . . 11 (𝑅 ∈ Ring → 0𝐵)
7372adantl 481 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0𝐵)
7473adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 0𝐵)
7571, 74ifcld 4164 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) ∈ 𝐵)
76753ad2ant1 1102 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) ∈ 𝐵)
773, 11, 4, 25, 26, 76matbas2d 20277 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) ∈ (Base‘𝐴))
783matring 20297 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
794, 2ringidcl 18614 . . . . . . . . . 10 (𝐴 ∈ Ring → 1 ∈ (Base‘𝐴))
8078, 79syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝐴))
8180adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 1 ∈ (Base‘𝐴))
8263, 81jca 553 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 · 𝑇) ∈ 𝐵1 ∈ (Base‘𝐴)))
8311, 3, 4, 12matvscl 20285 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑆 · 𝑇) ∈ 𝐵1 ∈ (Base‘𝐴))) → ((𝑆 · 𝑇) 1 ) ∈ (Base‘𝐴))
8482, 83syldan 486 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 · 𝑇) 1 ) ∈ (Base‘𝐴))
853, 4eqmat 20278 . . . . . 6 (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) ∈ (Base‘𝐴) ∧ ((𝑆 · 𝑇) 1 ) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = ((𝑆 · 𝑇) 1 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦)))
8677, 84, 85syl2anc 694 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = ((𝑆 · 𝑇) 1 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦)))
8768, 86mpbird 247 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = ((𝑆 · 𝑇) 1 ))
8844, 87eqtrd 2685 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 )) = ((𝑆 · 𝑇) 1 ))
8938, 88eqtrd 2685 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )) = ((𝑆 · 𝑇) 1 ))
9024, 89eqtrd 2685 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) × (𝑇 1 )) = ((𝑆 · 𝑇) 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  ifcif 4119  cfv 5926  (class class class)co 6690  cmpt2 6692  Fincfn 7997  Basecbs 15904  .rcmulr 15989   ·𝑠 cvsca 15992  0gc0g 16147  1rcur 18547  Ringcrg 18593   Mat cmat 20261   DMat cdmat 20342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-subrg 18826  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-dsmm 20124  df-frlm 20139  df-mamu 20238  df-mat 20262  df-dmat 20344
This theorem is referenced by:  scmatmulcl  20372  scmatmhm  20388
  Copyright terms: Public domain W3C validator