Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatmulcl Structured version   Visualization version   GIF version

Theorem scmatmulcl 20372
 Description: The product of two scalar matrices is a scalar matrix. (Contributed by AV, 21-Aug-2019.) (Revised by AV, 19-Dec-2019.)
Hypotheses
Ref Expression
scmatid.a 𝐴 = (𝑁 Mat 𝑅)
scmatid.b 𝐵 = (Base‘𝐴)
scmatid.e 𝐸 = (Base‘𝑅)
scmatid.0 0 = (0g𝑅)
scmatid.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatmulcl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)

Proof of Theorem scmatmulcl
Dummy variables 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatid.e . . . 4 𝐸 = (Base‘𝑅)
2 scmatid.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatid.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2651 . . . 4 (1r𝐴) = (1r𝐴)
5 eqid 2651 . . . 4 ( ·𝑠𝐴) = ( ·𝑠𝐴)
6 scmatid.s . . . 4 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatel 20359 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝑆 ↔ (𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)))))
81, 2, 3, 4, 5, 6scmatel 20359 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝑆 ↔ (𝑌𝐵 ∧ ∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)))))
9 oveq12 6699 . . . . . . . . . . . . 13 ((𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) = ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
109adantll 750 . . . . . . . . . . . 12 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) ∧ 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) = ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))))
11 simp-4l 823 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
12 simplr 807 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) → 𝑑𝐸)
1312anim1i 591 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → (𝑑𝐸𝑐𝐸))
1413ancomd 466 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → (𝑐𝐸𝑑𝐸))
15 scmatid.0 . . . . . . . . . . . . . . . . 17 0 = (0g𝑅)
16 eqid 2651 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
17 eqid 2651 . . . . . . . . . . . . . . . . 17 (.r𝐴) = (.r𝐴)
182, 1, 15, 4, 5, 16, 17scmatscmiddistr 20362 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑐𝐸𝑑𝐸)) → ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)))
1911, 14, 18syl2anc 694 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)))
20 simpl 472 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
21 simplr 807 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → 𝑅 ∈ Ring)
22 simprr 811 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → 𝑐𝐸)
23 simpl 472 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑𝐸𝑐𝐸) → 𝑑𝐸)
2423adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → 𝑑𝐸)
251, 16ringcl 18607 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ Ring ∧ 𝑐𝐸𝑑𝐸) → (𝑐(.r𝑅)𝑑) ∈ 𝐸)
2621, 22, 24, 25syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → (𝑐(.r𝑅)𝑑) ∈ 𝐸)
272matring 20297 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
283, 4ringidcl 18614 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ Ring → (1r𝐴) ∈ 𝐵)
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ 𝐵)
3029adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → (1r𝐴) ∈ 𝐵)
311, 2, 3, 5matvscl 20285 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑐(.r𝑅)𝑑) ∈ 𝐸 ∧ (1r𝐴) ∈ 𝐵)) → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵)
3220, 26, 30, 31syl12anc 1364 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵)
33 oveq1 6697 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = (𝑐(.r𝑅)𝑑) → (𝑒( ·𝑠𝐴)(1r𝐴)) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)))
3433eqeq2d 2661 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 = (𝑐(.r𝑅)𝑑) → (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)) ↔ ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴))))
3534adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) ∧ 𝑒 = (𝑐(.r𝑅)𝑑)) → (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)) ↔ ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴))))
36 eqidd 2652 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)))
3726, 35, 36rspcedvd 3348 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → ∃𝑒𝐸 ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))
381, 2, 3, 4, 5, 6scmatel 20359 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆 ↔ (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵 ∧ ∃𝑒𝐸 ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))))
3938adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆 ↔ (((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝐵 ∧ ∃𝑒𝐸 ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) = (𝑒( ·𝑠𝐴)(1r𝐴)))))
4032, 37, 39mpbir2and 977 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑑𝐸𝑐𝐸)) → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)
4140exp32 630 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑑𝐸 → (𝑐𝐸 → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)))
4241adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) → (𝑑𝐸 → (𝑐𝐸 → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)))
4342imp 444 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) → (𝑐𝐸 → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆))
4443adantr 480 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) → (𝑐𝐸 → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆))
4544imp 444 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → ((𝑐(.r𝑅)𝑑)( ·𝑠𝐴)(1r𝐴)) ∈ 𝑆)
4619, 45eqeltrd 2730 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
4746adantr 480 . . . . . . . . . . . . 13 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) ∧ 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
4847adantr 480 . . . . . . . . . . . 12 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) ∧ 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → ((𝑐( ·𝑠𝐴)(1r𝐴))(.r𝐴)(𝑑( ·𝑠𝐴)(1r𝐴))) ∈ 𝑆)
4910, 48eqeltrd 2730 . . . . . . . . . . 11 ((((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) ∧ 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) ∧ 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)
5049exp31 629 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) ∧ 𝑐𝐸) → (𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5150rexlimdva 3060 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) ∧ 𝑋𝐵) → (∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5251expimpd 628 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5352com23 86 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) ∧ 𝑑𝐸) → (𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5453rexlimdva 3060 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑌𝐵) → (∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴)) → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5554expimpd 628 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑌𝐵 ∧ ∃𝑑𝐸 𝑌 = (𝑑( ·𝑠𝐴)(1r𝐴))) → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
568, 55sylbid 230 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑌𝑆 → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5756com23 86 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋𝐵 ∧ ∃𝑐𝐸 𝑋 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝑌𝑆 → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
587, 57sylbid 230 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑋𝑆 → (𝑌𝑆 → (𝑋(.r𝐴)𝑌) ∈ 𝑆)))
5958imp32 448 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋(.r𝐴)𝑌) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∃wrex 2942  ‘cfv 5926  (class class class)co 6690  Fincfn 7997  Basecbs 15904  .rcmulr 15989   ·𝑠 cvsca 15992  0gc0g 16147  1rcur 18547  Ringcrg 18593   Mat cmat 20261   ScMat cscmat 20343 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-0g 16149  df-gsum 16150  df-prds 16155  df-pws 16157  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-subrg 18826  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-dsmm 20124  df-frlm 20139  df-mamu 20238  df-mat 20262  df-dmat 20344  df-scmat 20345 This theorem is referenced by:  scmatsrng  20374  scmatsrng1  20377
 Copyright terms: Public domain W3C validator